1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
*> \brief \b CGGRQF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGGRQF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggrqf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggrqf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggrqf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
* LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGGRQF computes a generalized RQ factorization of an M-by-N matrix A
*> and a P-by-N matrix B:
*>
*> A = R*Q, B = Z*T*Q,
*>
*> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
*> matrix, and R and T assume one of the forms:
*>
*> if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
*> N-M M ( R21 ) N
*> N
*>
*> where R12 or R21 is upper triangular, and
*>
*> if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
*> ( 0 ) P-N P N-P
*> N
*>
*> where T11 is upper triangular.
*>
*> In particular, if B is square and nonsingular, the GRQ factorization
*> of A and B implicitly gives the RQ factorization of A*inv(B):
*>
*> A*inv(B) = (R*inv(T))*Z**H
*>
*> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
*> conjugate transpose of the matrix Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, if M <= N, the upper triangle of the subarray
*> A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
*> if M > N, the elements on and above the (M-N)-th subdiagonal
*> contain the M-by-N upper trapezoidal matrix R; the remaining
*> elements, with the array TAUA, represent the unitary
*> matrix Q as a product of elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAUA
*> \verbatim
*> TAUA is COMPLEX array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix Q (see Further Details).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,N)
*> On entry, the P-by-N matrix B.
*> On exit, the elements on and above the diagonal of the array
*> contain the min(P,N)-by-N upper trapezoidal matrix T (T is
*> upper triangular if P >= N); the elements below the diagonal,
*> with the array TAUB, represent the unitary matrix Z as a
*> product of elementary reflectors (see Further Details).
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,P).
*> \endverbatim
*>
*> \param[out] TAUB
*> \verbatim
*> TAUB is COMPLEX array, dimension (min(P,N))
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix Z (see Further Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N,M,P).
*> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
*> where NB1 is the optimal blocksize for the RQ factorization
*> of an M-by-N matrix, NB2 is the optimal blocksize for the
*> QR factorization of a P-by-N matrix, and NB3 is the optimal
*> blocksize for a call of CUNMRQ.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO=-i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - taua * v * v**H
*>
*> where taua is a complex scalar, and v is a complex vector with
*> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
*> A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
*> To form Q explicitly, use LAPACK subroutine CUNGRQ.
*> To use Q to update another matrix, use LAPACK subroutine CUNMRQ.
*>
*> The matrix Z is represented as a product of elementary reflectors
*>
*> Z = H(1) H(2) . . . H(k), where k = min(p,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - taub * v * v**H
*>
*> where taub is a complex scalar, and v is a complex vector with
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
*> and taub in TAUB(i).
*> To form Z explicitly, use LAPACK subroutine CUNGQR.
*> To use Z to update another matrix, use LAPACK subroutine CUNMQR.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
$ LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
* ..
* .. External Subroutines ..
EXTERNAL CGEQRF, CGERQF, CUNMRQ, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NB1 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
NB2 = ILAENV( 1, 'CGEQRF', ' ', P, N, -1, -1 )
NB3 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 )
NB = MAX( NB1, NB2, NB3 )
LWKOPT = MAX( N, M, P)*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( P.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGGRQF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* RQ factorization of M-by-N matrix A: A = R*Q
*
CALL CGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
LOPT = WORK( 1 )
*
* Update B := B*Q**H
*
CALL CUNMRQ( 'Right', 'Conjugate Transpose', P, N, MIN( M, N ),
$ A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
$ LWORK, INFO )
LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
*
* QR factorization of P-by-N matrix B: B = Z*T
*
CALL CGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
*
RETURN
*
* End of CGGRQF
*
END
|