summaryrefslogtreecommitdiff
path: root/SRC/cgesvx.f
blob: 37c5e9ec3f7ea4c1671238752ab05c78346e49be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
*> \brief <b> CGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CGESVX + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvx.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvx.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvx.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
*                          EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
*                          WORK, RWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          EQUED, FACT, TRANS
*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
*       REAL               RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               BERR( * ), C( * ), FERR( * ), R( * ),
*      $                   RWORK( * )
*       COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
*      $                   WORK( * ), X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGESVX uses the LU factorization to compute the solution to a complex
*> system of linear equations
*>    A * X = B,
*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
*  =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*>    the system:
*>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
*>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*>    Whether or not the system will be equilibrated depends on the
*>    scaling of the matrix A, but if equilibration is used, A is
*>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*>    or diag(C)*B (if TRANS = 'T' or 'C').
*>
*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
*>    matrix A (after equilibration if FACT = 'E') as
*>       A = P * L * U,
*>    where P is a permutation matrix, L is a unit lower triangular
*>    matrix, and U is upper triangular.
*>
*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
*>    returns with INFO = i. Otherwise, the factored form of A is used
*>    to estimate the condition number of the matrix A.  If the
*>    reciprocal of the condition number is less than machine precision,
*>    INFO = N+1 is returned as a warning, but the routine still goes on
*>    to solve for X and compute error bounds as described below.
*>
*> 4. The system of equations is solved for X using the factored form
*>    of A.
*>
*> 5. Iterative refinement is applied to improve the computed solution
*>    matrix and calculate error bounds and backward error estimates
*>    for it.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
*>    that it solves the original system before equilibration.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] FACT
*> \verbatim
*>          FACT is CHARACTER*1
*>          Specifies whether or not the factored form of the matrix A is
*>          supplied on entry, and if not, whether the matrix A should be
*>          equilibrated before it is factored.
*>          = 'F':  On entry, AF and IPIV contain the factored form of A.
*>                  If EQUED is not 'N', the matrix A has been
*>                  equilibrated with scaling factors given by R and C.
*>                  A, AF, and IPIV are not modified.
*>          = 'N':  The matrix A will be copied to AF and factored.
*>          = 'E':  The matrix A will be equilibrated if necessary, then
*>                  copied to AF and factored.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
*>          not 'N', then A must have been equilibrated by the scaling
*>          factors in R and/or C.  A is not modified if FACT = 'F' or
*>          'N', or if FACT = 'E' and EQUED = 'N' on exit.
*>
*>          On exit, if EQUED .ne. 'N', A is scaled as follows:
*>          EQUED = 'R':  A := diag(R) * A
*>          EQUED = 'C':  A := A * diag(C)
*>          EQUED = 'B':  A := diag(R) * A * diag(C).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] AF
*> \verbatim
*>          AF is or output) COMPLEX array, dimension (LDAF,N)
*>          If FACT = 'F', then AF is an input argument and on entry
*>          contains the factors L and U from the factorization
*>          A = P*L*U as computed by CGETRF.  If EQUED .ne. 'N', then
*>          AF is the factored form of the equilibrated matrix A.
*>
*>          If FACT = 'N', then AF is an output argument and on exit
*>          returns the factors L and U from the factorization A = P*L*U
*>          of the original matrix A.
*>
*>          If FACT = 'E', then AF is an output argument and on exit
*>          returns the factors L and U from the factorization A = P*L*U
*>          of the equilibrated matrix A (see the description of A for
*>          the form of the equilibrated matrix).
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*>          LDAF is INTEGER
*>          The leading dimension of the array AF.  LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*>          IPIV is or output) INTEGER array, dimension (N)
*>          If FACT = 'F', then IPIV is an input argument and on entry
*>          contains the pivot indices from the factorization A = P*L*U
*>          as computed by CGETRF; row i of the matrix was interchanged
*>          with row IPIV(i).
*>
*>          If FACT = 'N', then IPIV is an output argument and on exit
*>          contains the pivot indices from the factorization A = P*L*U
*>          of the original matrix A.
*>
*>          If FACT = 'E', then IPIV is an output argument and on exit
*>          contains the pivot indices from the factorization A = P*L*U
*>          of the equilibrated matrix A.
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*>          EQUED is or output) CHARACTER*1
*>          Specifies the form of equilibration that was done.
*>          = 'N':  No equilibration (always true if FACT = 'N').
*>          = 'R':  Row equilibration, i.e., A has been premultiplied by
*>                  diag(R).
*>          = 'C':  Column equilibration, i.e., A has been postmultiplied
*>                  by diag(C).
*>          = 'B':  Both row and column equilibration, i.e., A has been
*>                  replaced by diag(R) * A * diag(C).
*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*>          output argument.
*> \endverbatim
*>
*> \param[in,out] R
*> \verbatim
*>          R is or output) REAL array, dimension (N)
*>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
*>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*>          is not accessed.  R is an input argument if FACT = 'F';
*>          otherwise, R is an output argument.  If FACT = 'F' and
*>          EQUED = 'R' or 'B', each element of R must be positive.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is or output) REAL array, dimension (N)
*>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
*>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*>          is not accessed.  C is an input argument if FACT = 'F';
*>          otherwise, C is an output argument.  If FACT = 'F' and
*>          EQUED = 'C' or 'B', each element of C must be positive.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit,
*>          if EQUED = 'N', B is not modified;
*>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*>          diag(R)*B;
*>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
*>          overwritten by diag(C)*B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,NRHS)
*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
*>          to the original system of equations.  Note that A and B are
*>          modified on exit if EQUED .ne. 'N', and the solution to the
*>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
*>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
*>          and EQUED = 'R' or 'B'.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The estimate of the reciprocal condition number of the matrix
*>          A after equilibration (if done).  If RCOND is less than the
*>          machine precision (in particular, if RCOND = 0), the matrix
*>          is singular to working precision.  This condition is
*>          indicated by a return code of INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is REAL array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is REAL array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (2*N)
*>          On exit, RWORK(1) contains the reciprocal pivot growth
*>          factor norm(A)/norm(U). The "max absolute element" norm is
*>          used. If RWORK(1) is much less than 1, then the stability
*>          of the LU factorization of the (equilibrated) matrix A
*>          could be poor. This also means that the solution X, condition
*>          estimator RCOND, and forward error bound FERR could be
*>          unreliable. If factorization fails with 0<INFO<=N, then
*>          RWORK(1) contains the reciprocal pivot growth factor for the
*>          leading INFO columns of A.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is
*>                <= N:  U(i,i) is exactly zero.  The factorization has
*>                       been completed, but the factor U is exactly
*>                       singular, so the solution and error bounds
*>                       could not be computed. RCOND = 0 is returned.
*>                = N+1: U is nonsingular, but RCOND is less than machine
*>                       precision, meaning that the matrix is singular
*>                       to working precision.  Nevertheless, the
*>                       solution and error bounds are computed because
*>                       there are a number of situations where the
*>                       computed solution can be more accurate than the
*>                       value of RCOND would suggest.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexGEsolve
*
*  =====================================================================
      SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
     $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
     $                   WORK, RWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, TRANS
      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               BERR( * ), C( * ), FERR( * ), R( * ),
     $                   RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
      CHARACTER          NORM
      INTEGER            I, INFEQU, J
      REAL               AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
     $                   ROWCND, RPVGRW, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, CLANTR, SLAMCH
      EXTERNAL           LSAME, CLANGE, CLANTR, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGECON, CGEEQU, CGERFS, CGETRF, CGETRS, CLACPY,
     $                   CLAQGE, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      NOTRAN = LSAME( TRANS, 'N' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         ROWEQU = .FALSE.
         COLEQU = .FALSE.
      ELSE
         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         SMLNUM = SLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -10
      ELSE
         IF( ROWEQU ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 10 J = 1, N
               RCMIN = MIN( RCMIN, R( J ) )
               RCMAX = MAX( RCMAX, R( J ) )
   10       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -11
            ELSE IF( N.GT.0 ) THEN
               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               ROWCND = ONE
            END IF
         END IF
         IF( COLEQU .AND. INFO.EQ.0 ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 20 J = 1, N
               RCMIN = MIN( RCMIN, C( J ) )
               RCMAX = MAX( RCMAX, C( J ) )
   20       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -12
            ELSE IF( N.GT.0 ) THEN
               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               COLCND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX( 1, N ) ) THEN
               INFO = -14
            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
               INFO = -16
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGESVX', -INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL CGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL CLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
     $                   EQUED )
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         END IF
      END IF
*
*     Scale the right hand side.
*
      IF( NOTRAN ) THEN
         IF( ROWEQU ) THEN
            DO 40 J = 1, NRHS
               DO 30 I = 1, N
                  B( I, J ) = R( I )*B( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( COLEQU ) THEN
         DO 60 J = 1, NRHS
            DO 50 I = 1, N
               B( I, J ) = C( I )*B( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the LU factorization of A.
*
         CALL CLACPY( 'Full', N, N, A, LDA, AF, LDAF )
         CALL CGETRF( N, N, AF, LDAF, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 ) THEN
*
*           Compute the reciprocal pivot growth factor of the
*           leading rank-deficient INFO columns of A.
*
            RPVGRW = CLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
     $               RWORK )
            IF( RPVGRW.EQ.ZERO ) THEN
               RPVGRW = ONE
            ELSE
               RPVGRW = CLANGE( 'M', N, INFO, A, LDA, RWORK ) /
     $                  RPVGRW
            END IF
            RWORK( 1 ) = RPVGRW
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A and the
*     reciprocal pivot growth factor RPVGRW.
*
      IF( NOTRAN ) THEN
         NORM = '1'
      ELSE
         NORM = 'I'
      END IF
      ANORM = CLANGE( NORM, N, N, A, LDA, RWORK )
      RPVGRW = CLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
      IF( RPVGRW.EQ.ZERO ) THEN
         RPVGRW = ONE
      ELSE
         RPVGRW = CLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
      END IF
*
*     Compute the reciprocal of the condition number of A.
*
      CALL CGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
*
*     Compute the solution matrix X.
*
      CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL CGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL CGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
     $             LDX, FERR, BERR, WORK, RWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( NOTRAN ) THEN
         IF( COLEQU ) THEN
            DO 80 J = 1, NRHS
               DO 70 I = 1, N
                  X( I, J ) = C( I )*X( I, J )
   70          CONTINUE
   80       CONTINUE
            DO 90 J = 1, NRHS
               FERR( J ) = FERR( J ) / COLCND
   90       CONTINUE
         END IF
      ELSE IF( ROWEQU ) THEN
         DO 110 J = 1, NRHS
            DO 100 I = 1, N
               X( I, J ) = R( I )*X( I, J )
  100       CONTINUE
  110    CONTINUE
         DO 120 J = 1, NRHS
            FERR( J ) = FERR( J ) / ROWCND
  120    CONTINUE
      END IF
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      RWORK( 1 ) = RPVGRW
      RETURN
*
*     End of CGESVX
*
      END