summaryrefslogtreecommitdiff
path: root/SRC/cgeqr2p.f
blob: e29bae0617584d0a5391e2a475288f53f90642c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
*> \brief \b CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGEQR2P + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqr2p.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqr2p.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqr2p.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEQR2P computes a QR factorization of a complex m by n matrix A:
*> A = Q * R. The diagonal entries of R are real and nonnegative.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the m by n matrix A.
*>          On exit, the elements on and above the diagonal of the array
*>          contain the min(m,n) by n upper trapezoidal matrix R (R is
*>          upper triangular if m >= n). The diagonal entries of R are
*>          real and nonnegative; the elements below the diagonal,
*>          with the array TAU, represent the unitary matrix Q as a
*>          product of elementary reflectors (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors (see Further
*>          Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup complexGEcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The matrix Q is represented as a product of elementary reflectors
*>
*>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
*>  and tau in TAU(i).
*>
*> See Lapack Working Note 203 for details
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.6.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2015
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, K
      COMPLEX            ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLARF, CLARFGP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEQR2P', -INFO )
         RETURN
      END IF
*
      K = MIN( M, N )
*
      DO 10 I = 1, K
*
*        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
         CALL CLARFGP( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
     $                TAU( I ) )
         IF( I.LT.N ) THEN
*
*           Apply H(i)**H to A(i:m,i+1:n) from the left
*
            ALPHA = A( I, I )
            A( I, I ) = ONE
            CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
     $                  CONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
            A( I, I ) = ALPHA
         END IF
   10 CONTINUE
      RETURN
*
*     End of CGEQR2P
*
      END