1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
*> \brief <b> CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGEEV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeev.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeev.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeev.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
* WORK, LWORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBVL, JOBVR
* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
* $ W( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGEEV computes for an N-by-N complex nonsymmetric matrix A, the
*> eigenvalues and, optionally, the left and/or right eigenvectors.
*>
*> The right eigenvector v(j) of A satisfies
*> A * v(j) = lambda(j) * v(j)
*> where lambda(j) is its eigenvalue.
*> The left eigenvector u(j) of A satisfies
*> u(j)**H * A = lambda(j) * u(j)**H
*> where u(j)**H denotes the conjugate transpose of u(j).
*>
*> The computed eigenvectors are normalized to have Euclidean norm
*> equal to 1 and largest component real.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBVL
*> \verbatim
*> JOBVL is CHARACTER*1
*> = 'N': left eigenvectors of A are not computed;
*> = 'V': left eigenvectors of are computed.
*> \endverbatim
*>
*> \param[in] JOBVR
*> \verbatim
*> JOBVR is CHARACTER*1
*> = 'N': right eigenvectors of A are not computed;
*> = 'V': right eigenvectors of A are computed.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the N-by-N matrix A.
*> On exit, A has been overwritten.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is COMPLEX array, dimension (N)
*> W contains the computed eigenvalues.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*> VL is COMPLEX array, dimension (LDVL,N)
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
*> after another in the columns of VL, in the same order
*> as their eigenvalues.
*> If JOBVL = 'N', VL is not referenced.
*> u(j) = VL(:,j), the j-th column of VL.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the array VL. LDVL >= 1; if
*> JOBVL = 'V', LDVL >= N.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*> VR is COMPLEX array, dimension (LDVR,N)
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
*> after another in the columns of VR, in the same order
*> as their eigenvalues.
*> If JOBVR = 'N', VR is not referenced.
*> v(j) = VR(:,j), the j-th column of VR.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the array VR. LDVR >= 1; if
*> JOBVR = 'V', LDVR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, the QR algorithm failed to compute all the
*> eigenvalues, and no eigenvectors have been computed;
*> elements and i+1:N of W contain eigenvalues which have
*> converged.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexGEeigen
*
* =====================================================================
SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
$ WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
$ W( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
CHARACTER SIDE
INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
$ IWRK, K, MAXWRK, MINWRK, NOUT
REAL ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
COMPLEX TMP
* ..
* .. Local Arrays ..
LOGICAL SELECT( 1 )
REAL DUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY, CLASCL,
$ CSCAL, CSSCAL, CTREVC, CUNGHR, SLABAD, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV, ISAMAX
REAL CLANGE, SCNRM2, SLAMCH
EXTERNAL LSAME, ILAENV, ISAMAX, CLANGE, SCNRM2, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, CMPLX, CONJG, MAX, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
WANTVL = LSAME( JOBVL, 'V' )
WANTVR = LSAME( JOBVR, 'V' )
IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
INFO = -1
ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
INFO = -8
ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
INFO = -10
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* CWorkspace refers to complex workspace, and RWorkspace to real
* workspace. NB refers to the optimal block size for the
* immediately following subroutine, as returned by ILAENV.
* HSWORK refers to the workspace preferred by CHSEQR, as
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
* the worst case.)
*
IF( INFO.EQ.0 ) THEN
IF( N.EQ.0 ) THEN
MINWRK = 1
MAXWRK = 1
ELSE
MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
MINWRK = 2*N
IF( WANTVL ) THEN
MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
$ ' ', N, 1, N, -1 ) )
CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
$ WORK, -1, INFO )
ELSE IF( WANTVR ) THEN
MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
$ ' ', N, 1, N, -1 ) )
CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
$ WORK, -1, INFO )
ELSE
CALL CHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
$ WORK, -1, INFO )
END IF
HSWORK = WORK( 1 )
MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
END IF
WORK( 1 ) = MAXWRK
*
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGEEV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
SCALEA = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
SCALEA = .TRUE.
CSCALE = SMLNUM
ELSE IF( ANRM.GT.BIGNUM ) THEN
SCALEA = .TRUE.
CSCALE = BIGNUM
END IF
IF( SCALEA )
$ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
* Balance the matrix
* (CWorkspace: none)
* (RWorkspace: need N)
*
IBAL = 1
CALL CGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
*
* Reduce to upper Hessenberg form
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: none)
*
ITAU = 1
IWRK = ITAU + N
CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
IF( WANTVL ) THEN
*
* Want left eigenvectors
* Copy Householder vectors to VL
*
SIDE = 'L'
CALL CLACPY( 'L', N, N, A, LDA, VL, LDVL )
*
* Generate unitary matrix in VL
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
* (RWorkspace: none)
*
CALL CUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
* Perform QR iteration, accumulating Schur vectors in VL
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
*
IF( WANTVR ) THEN
*
* Want left and right eigenvectors
* Copy Schur vectors to VR
*
SIDE = 'B'
CALL CLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
END IF
*
ELSE IF( WANTVR ) THEN
*
* Want right eigenvectors
* Copy Householder vectors to VR
*
SIDE = 'R'
CALL CLACPY( 'L', N, N, A, LDA, VR, LDVR )
*
* Generate unitary matrix in VR
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
* (RWorkspace: none)
*
CALL CUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
* Perform QR iteration, accumulating Schur vectors in VR
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
*
ELSE
*
* Compute eigenvalues only
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL CHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
END IF
*
* If INFO > 0 from CHSEQR, then quit
*
IF( INFO.GT.0 )
$ GO TO 50
*
IF( WANTVL .OR. WANTVR ) THEN
*
* Compute left and/or right eigenvectors
* (CWorkspace: need 2*N)
* (RWorkspace: need 2*N)
*
IRWORK = IBAL + N
CALL CTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
$ N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
END IF
*
IF( WANTVL ) THEN
*
* Undo balancing of left eigenvectors
* (CWorkspace: none)
* (RWorkspace: need N)
*
CALL CGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
$ IERR )
*
* Normalize left eigenvectors and make largest component real
*
DO 20 I = 1, N
SCL = ONE / SCNRM2( N, VL( 1, I ), 1 )
CALL CSSCAL( N, SCL, VL( 1, I ), 1 )
DO 10 K = 1, N
RWORK( IRWORK+K-1 ) = REAL( VL( K, I ) )**2 +
$ AIMAG( VL( K, I ) )**2
10 CONTINUE
K = ISAMAX( N, RWORK( IRWORK ), 1 )
TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
CALL CSCAL( N, TMP, VL( 1, I ), 1 )
VL( K, I ) = CMPLX( REAL( VL( K, I ) ), ZERO )
20 CONTINUE
END IF
*
IF( WANTVR ) THEN
*
* Undo balancing of right eigenvectors
* (CWorkspace: none)
* (RWorkspace: need N)
*
CALL CGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
$ IERR )
*
* Normalize right eigenvectors and make largest component real
*
DO 40 I = 1, N
SCL = ONE / SCNRM2( N, VR( 1, I ), 1 )
CALL CSSCAL( N, SCL, VR( 1, I ), 1 )
DO 30 K = 1, N
RWORK( IRWORK+K-1 ) = REAL( VR( K, I ) )**2 +
$ AIMAG( VR( K, I ) )**2
30 CONTINUE
K = ISAMAX( N, RWORK( IRWORK ), 1 )
TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
CALL CSCAL( N, TMP, VR( 1, I ), 1 )
VR( K, I ) = CMPLX( REAL( VR( K, I ) ), ZERO )
40 CONTINUE
END IF
*
* Undo scaling if necessary
*
50 CONTINUE
IF( SCALEA ) THEN
CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
$ MAX( N-INFO, 1 ), IERR )
IF( INFO.GT.0 ) THEN
CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
END IF
END IF
*
WORK( 1 ) = MAXWRK
RETURN
*
* End of CGEEV
*
END
|