summaryrefslogtreecommitdiff
path: root/SRC/cgebrd.f
blob: e63c6ea1368fa0583f7d6be6c8ae37d088e0bbc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
*> \brief \b CGEBRD
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CGEBRD + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebrd.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebrd.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebrd.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
*                          INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               D( * ), E( * )
*       COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ),
*      $                   WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEBRD reduces a general complex M-by-N matrix A to upper or lower
*> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
*>
*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows in the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns in the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the M-by-N general matrix to be reduced.
*>          On exit,
*>          if m >= n, the diagonal and the first superdiagonal are
*>            overwritten with the upper bidiagonal matrix B; the
*>            elements below the diagonal, with the array TAUQ, represent
*>            the unitary matrix Q as a product of elementary
*>            reflectors, and the elements above the first superdiagonal,
*>            with the array TAUP, represent the unitary matrix P as
*>            a product of elementary reflectors;
*>          if m < n, the diagonal and the first subdiagonal are
*>            overwritten with the lower bidiagonal matrix B; the
*>            elements below the first subdiagonal, with the array TAUQ,
*>            represent the unitary matrix Q as a product of
*>            elementary reflectors, and the elements above the diagonal,
*>            with the array TAUP, represent the unitary matrix P as
*>            a product of elementary reflectors.
*>          See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is REAL array, dimension (min(M,N))
*>          The diagonal elements of the bidiagonal matrix B:
*>          D(i) = A(i,i).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is REAL array, dimension (min(M,N)-1)
*>          The off-diagonal elements of the bidiagonal matrix B:
*>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
*>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*> \endverbatim
*>
*> \param[out] TAUQ
*> \verbatim
*>          TAUQ is COMPLEX array dimension (min(M,N))
*>          The scalar factors of the elementary reflectors which
*>          represent the unitary matrix Q. See Further Details.
*> \endverbatim
*>
*> \param[out] TAUP
*> \verbatim
*>          TAUP is COMPLEX array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors which
*>          represent the unitary matrix P. See Further Details.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK.  LWORK >= max(1,M,N).
*>          For optimum performance LWORK >= (M+N)*NB, where NB
*>          is the optimal blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexGEcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The matrices Q and P are represented as products of elementary
*>  reflectors:
*>
*>  If m >= n,
*>
*>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
*>
*>  Each H(i) and G(i) has the form:
*>
*>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
*>
*>  where tauq and taup are complex scalars, and v and u are complex
*>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
*>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
*>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*>  If m < n,
*>
*>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
*>
*>  Each H(i) and G(i) has the form:
*>
*>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
*>
*>  where tauq and taup are complex scalars, and v and u are complex
*>  vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
*>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
*>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*>  The contents of A on exit are illustrated by the following examples:
*>
*>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
*>
*>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
*>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
*>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
*>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
*>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
*>    (  v1  v2  v3  v4  v5 )
*>
*>  where d and e denote diagonal and off-diagonal elements of B, vi
*>  denotes an element of the vector defining H(i), and ui an element of
*>  the vector defining G(i).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
      COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
     $                   NBMIN, NX
      REAL               WS
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEBD2, CGEMM, CLABRD, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      NB = MAX( 1, ILAENV( 1, 'CGEBRD', ' ', M, N, -1, -1 ) )
      LWKOPT = ( M+N )*NB
      WORK( 1 ) = REAL( LWKOPT )
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -10
      END IF
      IF( INFO.LT.0 ) THEN
         CALL XERBLA( 'CGEBRD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      MINMN = MIN( M, N )
      IF( MINMN.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      WS = MAX( M, N )
      LDWRKX = M
      LDWRKY = N
*
      IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
*
*        Set the crossover point NX.
*
         NX = MAX( NB, ILAENV( 3, 'CGEBRD', ' ', M, N, -1, -1 ) )
*
*        Determine when to switch from blocked to unblocked code.
*
         IF( NX.LT.MINMN ) THEN
            WS = ( M+N )*NB
            IF( LWORK.LT.WS ) THEN
*
*              Not enough work space for the optimal NB, consider using
*              a smaller block size.
*
               NBMIN = ILAENV( 2, 'CGEBRD', ' ', M, N, -1, -1 )
               IF( LWORK.GE.( M+N )*NBMIN ) THEN
                  NB = LWORK / ( M+N )
               ELSE
                  NB = 1
                  NX = MINMN
               END IF
            END IF
         END IF
      ELSE
         NX = MINMN
      END IF
*
      DO 30 I = 1, MINMN - NX, NB
*
*        Reduce rows and columns i:i+ib-1 to bidiagonal form and return
*        the matrices X and Y which are needed to update the unreduced
*        part of the matrix
*
         CALL CLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
     $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
     $                WORK( LDWRKX*NB+1 ), LDWRKY )
*
*        Update the trailing submatrix A(i+ib:m,i+ib:n), using
*        an update of the form  A := A - V*Y**H - X*U**H
*
         CALL CGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1,
     $               N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA,
     $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
     $               A( I+NB, I+NB ), LDA )
         CALL CGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
     $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
     $               ONE, A( I+NB, I+NB ), LDA )
*
*        Copy diagonal and off-diagonal elements of B back into A
*
         IF( M.GE.N ) THEN
            DO 10 J = I, I + NB - 1
               A( J, J ) = D( J )
               A( J, J+1 ) = E( J )
   10       CONTINUE
         ELSE
            DO 20 J = I, I + NB - 1
               A( J, J ) = D( J )
               A( J+1, J ) = E( J )
   20       CONTINUE
         END IF
   30 CONTINUE
*
*     Use unblocked code to reduce the remainder of the matrix
*
      CALL CGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
     $             TAUQ( I ), TAUP( I ), WORK, IINFO )
      WORK( 1 ) = WS
      RETURN
*
*     End of CGEBRD
*
      END