1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
*> \brief \b SNRM2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION SNRM2(N,X,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* REAL X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SNRM2 returns the euclidean norm of a vector via the function
*> name, so that
*>
*> SNRM2 := sqrt( x'*x ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup single_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> -- This version written on 25-October-1982.
*> Modified on 14-October-1993 to inline the call to SLASSQ.
*> Sven Hammarling, Nag Ltd.
*> \endverbatim
*>
* =====================================================================
REAL FUNCTION SNRM2(N,X,INCX)
*
* -- Reference BLAS level1 routine (version 3.7.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INCX,N
* ..
* .. Array Arguments ..
REAL X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE,ZERO
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
* ..
* .. Local Scalars ..
REAL ABSXI,NORM,SCALE,SSQ
INTEGER IX
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS,SQRT
* ..
IF (N.LT.1 .OR. INCX.LT.1) THEN
NORM = ZERO
ELSE IF (N.EQ.1) THEN
NORM = ABS(X(1))
ELSE
SCALE = ZERO
SSQ = ONE
* The following loop is equivalent to this call to the LAPACK
* auxiliary routine:
* CALL SLASSQ( N, X, INCX, SCALE, SSQ )
*
DO 10 IX = 1,1 + (N-1)*INCX,INCX
IF (X(IX).NE.ZERO) THEN
ABSXI = ABS(X(IX))
IF (SCALE.LT.ABSXI) THEN
SSQ = ONE + SSQ* (SCALE/ABSXI)**2
SCALE = ABSXI
ELSE
SSQ = SSQ + (ABSXI/SCALE)**2
END IF
END IF
10 CONTINUE
NORM = SCALE*SQRT(SSQ)
END IF
*
SNRM2 = NORM
RETURN
*
* End of SNRM2.
*
END
|