summaryrefslogtreecommitdiff
path: root/BLAS/SRC/sgemm.f
blob: ca2fb175d37679e46a663c701105126aae481515 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
*> \brief \b SGEMM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       REAL ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,M,N
*       CHARACTER TRANSA,TRANSB
*       ..
*       .. Array Arguments ..
*       REAL A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEMM  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**T.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry,  M  specifies  the number  of rows  of the  matrix
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N  specifies the number  of columns of the matrix
*>           op( B ) and the number of columns of the matrix C. N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is REAL
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension ( LDC, N )
*>           Before entry, the leading  m by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the array  C  is overwritten by the  m by n  matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup single_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      REAL TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL NOTA,NOTB
*     ..
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('SGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And if  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          END IF
      ELSE
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 170 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 130 I = 1,M
                          C(I,J) = ZERO
  130                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 140 I = 1,M
                          C(I,J) = BETA*C(I,J)
  140                 CONTINUE
                  END IF
                  DO 160 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 150 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  150                 CONTINUE
  160             CONTINUE
  170         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 200 J = 1,N
                  DO 190 I = 1,M
                      TEMP = ZERO
                      DO 180 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  180                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  190             CONTINUE
  200         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of SGEMM .
*
      END