summaryrefslogtreecommitdiff
path: root/BLAS/SRC/dtrsv.f
blob: cab3fd9895a5508c0db63dd97f724d7e5513e9f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
*> \brief \b DTRSV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
*
*       .. Scalar Arguments ..
*       INTEGER INCX,LDA,N
*       CHARACTER DIAG,TRANS,UPLO
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION A(LDA,*),X(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DTRSV  solves one of the systems of equations
*>
*>    A*x = b,   or   A**T*x = b,
*>
*> where b and x are n element vectors and A is an n by n unit, or
*> non-unit, upper or lower triangular matrix.
*>
*> No test for singularity or near-singularity is included in this
*> routine. Such tests must be performed before calling this routine.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the matrix is an upper or
*>           lower triangular matrix as follows:
*>
*>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*>
*>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>           On entry, TRANS specifies the equations to be solved as
*>           follows:
*>
*>              TRANS = 'N' or 'n'   A*x = b.
*>
*>              TRANS = 'T' or 't'   A**T*x = b.
*>
*>              TRANS = 'C' or 'c'   A**T*x = b.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>           On entry, DIAG specifies whether or not A is unit
*>           triangular as follows:
*>
*>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*>
*>              DIAG = 'N' or 'n'   A is not assumed to be unit
*>                                  triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the order of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
*>           Before entry with  UPLO = 'U' or 'u', the leading n by n
*>           upper triangular part of the array A must contain the upper
*>           triangular matrix and the strictly lower triangular part of
*>           A is not referenced.
*>           Before entry with UPLO = 'L' or 'l', the leading n by n
*>           lower triangular part of the array A must contain the lower
*>           triangular matrix and the strictly upper triangular part of
*>           A is not referenced.
*>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*>           A are not referenced either, but are assumed to be unity.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. LDA must be at least
*>           max( 1, n ).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is DOUBLE PRECISION array of dimension at least
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the n
*>           element right-hand side vector b. On exit, X is overwritten
*>           with the solution vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*>
*>  Level 2 Blas routine.
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_blas_level1
*
*  =====================================================================
      SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
*
*  -- Reference BLAS level1 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER INCX,LDA,N
      CHARACTER DIAG,TRANS,UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),X(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER (ZERO=0.0D+0)
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION TEMP
      INTEGER I,INFO,IX,J,JX,KX
      LOGICAL NOUNIT
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
     +         .NOT.LSAME(TRANS,'C')) THEN
          INFO = 2
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (LDA.LT.MAX(1,N)) THEN
          INFO = 6
      ELSE IF (INCX.EQ.0) THEN
          INFO = 8
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DTRSV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (N.EQ.0) RETURN
*
      NOUNIT = LSAME(DIAG,'N')
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
      IF (INCX.LE.0) THEN
          KX = 1 - (N-1)*INCX
      ELSE IF (INCX.NE.1) THEN
          KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  x := inv( A )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              IF (INCX.EQ.1) THEN
                  DO 20 J = N,1,-1
                      IF (X(J).NE.ZERO) THEN
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
                          TEMP = X(J)
                          DO 10 I = J - 1,1,-1
                              X(I) = X(I) - TEMP*A(I,J)
   10                     CONTINUE
                      END IF
   20             CONTINUE
              ELSE
                  JX = KX + (N-1)*INCX
                  DO 40 J = N,1,-1
                      IF (X(JX).NE.ZERO) THEN
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
                          TEMP = X(JX)
                          IX = JX
                          DO 30 I = J - 1,1,-1
                              IX = IX - INCX
                              X(IX) = X(IX) - TEMP*A(I,J)
   30                     CONTINUE
                      END IF
                      JX = JX - INCX
   40             CONTINUE
              END IF
          ELSE
              IF (INCX.EQ.1) THEN
                  DO 60 J = 1,N
                      IF (X(J).NE.ZERO) THEN
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
                          TEMP = X(J)
                          DO 50 I = J + 1,N
                              X(I) = X(I) - TEMP*A(I,J)
   50                     CONTINUE
                      END IF
   60             CONTINUE
              ELSE
                  JX = KX
                  DO 80 J = 1,N
                      IF (X(JX).NE.ZERO) THEN
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
                          TEMP = X(JX)
                          IX = JX
                          DO 70 I = J + 1,N
                              IX = IX + INCX
                              X(IX) = X(IX) - TEMP*A(I,J)
   70                     CONTINUE
                      END IF
                      JX = JX + INCX
   80             CONTINUE
              END IF
          END IF
      ELSE
*
*        Form  x := inv( A**T )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              IF (INCX.EQ.1) THEN
                  DO 100 J = 1,N
                      TEMP = X(J)
                      DO 90 I = 1,J - 1
                          TEMP = TEMP - A(I,J)*X(I)
   90                 CONTINUE
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
                      X(J) = TEMP
  100             CONTINUE
              ELSE
                  JX = KX
                  DO 120 J = 1,N
                      TEMP = X(JX)
                      IX = KX
                      DO 110 I = 1,J - 1
                          TEMP = TEMP - A(I,J)*X(IX)
                          IX = IX + INCX
  110                 CONTINUE
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
                      X(JX) = TEMP
                      JX = JX + INCX
  120             CONTINUE
              END IF
          ELSE
              IF (INCX.EQ.1) THEN
                  DO 140 J = N,1,-1
                      TEMP = X(J)
                      DO 130 I = N,J + 1,-1
                          TEMP = TEMP - A(I,J)*X(I)
  130                 CONTINUE
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
                      X(J) = TEMP
  140             CONTINUE
              ELSE
                  KX = KX + (N-1)*INCX
                  JX = KX
                  DO 160 J = N,1,-1
                      TEMP = X(JX)
                      IX = KX
                      DO 150 I = N,J + 1,-1
                          TEMP = TEMP - A(I,J)*X(IX)
                          IX = IX - INCX
  150                 CONTINUE
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
                      X(JX) = TEMP
                      JX = JX - INCX
  160             CONTINUE
              END IF
          END IF
      END IF
*
      RETURN
*
*     End of DTRSV .
*
      END