1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DPARAM(5),DX(1),DY(1)
* ..
*
* Purpose
* =======
*
* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
*
* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN
* (DY**T)
*
* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY.
* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS..
*
* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0
*
* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0)
* H=( ) ( ) ( ) ( )
* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0).
* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM.
*
* Arguments
* =========
*
* N (input) INTEGER
* number of elements in input vector(s)
*
* DX (input/output) DOUBLE PRECISION array, dimension N
* double precision vector with 5 elements
*
* INCX (input) INTEGER
* storage spacing between elements of DX
*
* DY (input/output) DOUBLE PRECISION array, dimension N
* double precision vector with N elements
*
* INCY (input) INTEGER
* storage spacing between elements of DY
*
* DPARAM (input/output) DOUBLE PRECISION array, dimension 5
* DPARAM(1)=DFLAG
* DPARAM(2)=DH11
* DPARAM(3)=DH21
* DPARAM(4)=DH12
* DPARAM(5)=DH22
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DFLAG,DH11,DH12,DH21,DH22,TWO,W,Z,ZERO
INTEGER I,KX,KY,NSTEPS
* ..
* .. Data statements ..
DATA ZERO,TWO/0.D0,2.D0/
* ..
*
DFLAG = DPARAM(1)
IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) GO TO 140
IF (.NOT. (INCX.EQ.INCY.AND.INCX.GT.0)) GO TO 70
*
NSTEPS = N*INCX
IF (DFLAG) 50,10,30
10 CONTINUE
DH12 = DPARAM(4)
DH21 = DPARAM(3)
DO 20 I = 1,NSTEPS,INCX
W = DX(I)
Z = DY(I)
DX(I) = W + Z*DH12
DY(I) = W*DH21 + Z
20 CONTINUE
GO TO 140
30 CONTINUE
DH11 = DPARAM(2)
DH22 = DPARAM(5)
DO 40 I = 1,NSTEPS,INCX
W = DX(I)
Z = DY(I)
DX(I) = W*DH11 + Z
DY(I) = -W + DH22*Z
40 CONTINUE
GO TO 140
50 CONTINUE
DH11 = DPARAM(2)
DH12 = DPARAM(4)
DH21 = DPARAM(3)
DH22 = DPARAM(5)
DO 60 I = 1,NSTEPS,INCX
W = DX(I)
Z = DY(I)
DX(I) = W*DH11 + Z*DH12
DY(I) = W*DH21 + Z*DH22
60 CONTINUE
GO TO 140
70 CONTINUE
KX = 1
KY = 1
IF (INCX.LT.0) KX = 1 + (1-N)*INCX
IF (INCY.LT.0) KY = 1 + (1-N)*INCY
*
IF (DFLAG) 120,80,100
80 CONTINUE
DH12 = DPARAM(4)
DH21 = DPARAM(3)
DO 90 I = 1,N
W = DX(KX)
Z = DY(KY)
DX(KX) = W + Z*DH12
DY(KY) = W*DH21 + Z
KX = KX + INCX
KY = KY + INCY
90 CONTINUE
GO TO 140
100 CONTINUE
DH11 = DPARAM(2)
DH22 = DPARAM(5)
DO 110 I = 1,N
W = DX(KX)
Z = DY(KY)
DX(KX) = W*DH11 + Z
DY(KY) = -W + DH22*Z
KX = KX + INCX
KY = KY + INCY
110 CONTINUE
GO TO 140
120 CONTINUE
DH11 = DPARAM(2)
DH12 = DPARAM(4)
DH21 = DPARAM(3)
DH22 = DPARAM(5)
DO 130 I = 1,N
W = DX(KX)
Z = DY(KY)
DX(KX) = W*DH11 + Z*DH12
DY(KY) = W*DH21 + Z*DH22
KX = KX + INCX
KY = KY + INCY
130 CONTINUE
140 CONTINUE
RETURN
END
|