summaryrefslogtreecommitdiff
path: root/BLAS/SRC/chpr2.f
blob: 66ef2f290b4c1965b063208a9f9b8a6fa196950c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
*> \brief \b CHPR2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
*
*       .. Scalar Arguments ..
*       COMPLEX ALPHA
*       INTEGER INCX,INCY,N
*       CHARACTER UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX AP(*),X(*),Y(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHPR2  performs the hermitian rank 2 operation
*>
*>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
*>
*> where alpha is a scalar, x and y are n element vectors and A is an
*> n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the upper or lower
*>           triangular part of the matrix A is supplied in the packed
*>           array AP as follows:
*>
*>              UPLO = 'U' or 'u'   The upper triangular part of A is
*>                                  supplied in AP.
*>
*>              UPLO = 'L' or 'l'   The lower triangular part of A is
*>                                  supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the order of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array, dimension at least
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the n
*>           element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*>          Y is COMPLEX array, dimension at least
*>           ( 1 + ( n - 1 )*abs( INCY ) ).
*>           Before entry, the incremented array Y must contain the n
*>           element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*>          INCY is INTEGER
*>           On entry, INCY specifies the increment for the elements of
*>           Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*>          AP is COMPLEX array, dimension at least
*>           ( ( n*( n + 1 ) )/2 ).
*>           Before entry with  UPLO = 'U' or 'u', the array AP must
*>           contain the upper triangular part of the hermitian matrix
*>           packed sequentially, column by column, so that AP( 1 )
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*>           and a( 2, 2 ) respectively, and so on. On exit, the array
*>           AP is overwritten by the upper triangular part of the
*>           updated matrix.
*>           Before entry with UPLO = 'L' or 'l', the array AP must
*>           contain the lower triangular part of the hermitian matrix
*>           packed sequentially, column by column, so that AP( 1 )
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*>           and a( 3, 1 ) respectively, and so on. On exit, the array
*>           AP is overwritten by the lower triangular part of the
*>           updated matrix.
*>           Note that the imaginary parts of the diagonal elements need
*>           not be set, they are assumed to be zero, and on exit they
*>           are set to zero.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_blas_level2
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 2 Blas routine.
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
*
*  -- Reference BLAS level2 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX ALPHA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX AP(*),X(*),Y(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX ZERO
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*     .. Local Scalars ..
      COMPLEX TEMP1,TEMP2
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CONJG,REAL
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (INCX.EQ.0) THEN
          INFO = 5
      ELSE IF (INCY.EQ.0) THEN
          INFO = 7
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('CHPR2 ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
*     Set up the start points in X and Y if the increments are not both
*     unity.
*
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
          IF (INCX.GT.0) THEN
              KX = 1
          ELSE
              KX = 1 - (N-1)*INCX
          END IF
          IF (INCY.GT.0) THEN
              KY = 1
          ELSE
              KY = 1 - (N-1)*INCY
          END IF
          JX = KX
          JY = KY
      END IF
*
*     Start the operations. In this version the elements of the array AP
*     are accessed sequentially with one pass through AP.
*
      KK = 1
      IF (LSAME(UPLO,'U')) THEN
*
*        Form  A  when upper triangle is stored in AP.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 20 J = 1,N
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
                      TEMP1 = ALPHA*CONJG(Y(J))
                      TEMP2 = CONJG(ALPHA*X(J))
                      K = KK
                      DO 10 I = 1,J - 1
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
                          K = K + 1
   10                 CONTINUE
                      AP(KK+J-1) = REAL(AP(KK+J-1)) +
     +                             REAL(X(J)*TEMP1+Y(J)*TEMP2)
                  ELSE
                      AP(KK+J-1) = REAL(AP(KK+J-1))
                  END IF
                  KK = KK + J
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
                      TEMP1 = ALPHA*CONJG(Y(JY))
                      TEMP2 = CONJG(ALPHA*X(JX))
                      IX = KX
                      IY = KY
                      DO 30 K = KK,KK + J - 2
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
                          IX = IX + INCX
                          IY = IY + INCY
   30                 CONTINUE
                      AP(KK+J-1) = REAL(AP(KK+J-1)) +
     +                             REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
                  ELSE
                      AP(KK+J-1) = REAL(AP(KK+J-1))
                  END IF
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + J
   40         CONTINUE
          END IF
      ELSE
*
*        Form  A  when lower triangle is stored in AP.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 60 J = 1,N
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
                      TEMP1 = ALPHA*CONJG(Y(J))
                      TEMP2 = CONJG(ALPHA*X(J))
                      AP(KK) = REAL(AP(KK)) +
     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
                      K = KK + 1
                      DO 50 I = J + 1,N
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
                          K = K + 1
   50                 CONTINUE
                  ELSE
                      AP(KK) = REAL(AP(KK))
                  END IF
                  KK = KK + N - J + 1
   60         CONTINUE
          ELSE
              DO 80 J = 1,N
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
                      TEMP1 = ALPHA*CONJG(Y(JY))
                      TEMP2 = CONJG(ALPHA*X(JX))
                      AP(KK) = REAL(AP(KK)) +
     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
                      IX = JX
                      IY = JY
                      DO 70 K = KK + 1,KK + N - J
                          IX = IX + INCX
                          IY = IY + INCY
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
   70                 CONTINUE
                  ELSE
                      AP(KK) = REAL(AP(KK))
                  END IF
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + N - J + 1
   80         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of CHPR2 .
*
      END