summaryrefslogtreecommitdiff
path: root/BLAS/SRC/cher.f
blob: 78a4e0b7f8ba4b5ce5001342b8b138d2918474cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
*> \brief \b CHER
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
*
*       .. Scalar Arguments ..
*       REAL ALPHA
*       INTEGER INCX,LDA,N
*       CHARACTER UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX A(LDA,*),X(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHER   performs the hermitian rank 1 operation
*>
*>    A := alpha*x*x**H + A,
*>
*> where alpha is a real scalar, x is an n element vector and A is an
*> n by n hermitian matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the upper or lower
*>           triangular part of the array A is to be referenced as
*>           follows:
*>
*>              UPLO = 'U' or 'u'   Only the upper triangular part of A
*>                                  is to be referenced.
*>
*>              UPLO = 'L' or 'l'   Only the lower triangular part of A
*>                                  is to be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the order of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array of dimension at least
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the n
*>           element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array of DIMENSION ( LDA, n ).
*>           Before entry with  UPLO = 'U' or 'u', the leading n by n
*>           upper triangular part of the array A must contain the upper
*>           triangular part of the hermitian matrix and the strictly
*>           lower triangular part of A is not referenced. On exit, the
*>           upper triangular part of the array A is overwritten by the
*>           upper triangular part of the updated matrix.
*>           Before entry with UPLO = 'L' or 'l', the leading n by n
*>           lower triangular part of the array A must contain the lower
*>           triangular part of the hermitian matrix and the strictly
*>           upper triangular part of A is not referenced. On exit, the
*>           lower triangular part of the array A is overwritten by the
*>           lower triangular part of the updated matrix.
*>           Note that the imaginary parts of the diagonal elements need
*>           not be set, they are assumed to be zero, and on exit they
*>           are set to zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. LDA must be at least
*>           max( 1, n ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_blas_level2
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 2 Blas routine.
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
*
*  -- Reference BLAS level2 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      REAL ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX A(LDA,*),X(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX ZERO
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*     .. Local Scalars ..
      COMPLEX TEMP
      INTEGER I,INFO,IX,J,JX,KX
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CONJG,MAX,REAL
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (INCX.EQ.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,N)) THEN
          INFO = 7
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('CHER  ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
*     Set the start point in X if the increment is not unity.
*
      IF (INCX.LE.0) THEN
          KX = 1 - (N-1)*INCX
      ELSE IF (INCX.NE.1) THEN
          KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
      IF (LSAME(UPLO,'U')) THEN
*
*        Form  A  when A is stored in upper triangle.
*
          IF (INCX.EQ.1) THEN
              DO 20 J = 1,N
                  IF (X(J).NE.ZERO) THEN
                      TEMP = ALPHA*CONJG(X(J))
                      DO 10 I = 1,J - 1
                          A(I,J) = A(I,J) + X(I)*TEMP
   10                 CONTINUE
                      A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
                  ELSE
                      A(J,J) = REAL(A(J,J))
                  END IF
   20         CONTINUE
          ELSE
              JX = KX
              DO 40 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*CONJG(X(JX))
                      IX = KX
                      DO 30 I = 1,J - 1
                          A(I,J) = A(I,J) + X(IX)*TEMP
                          IX = IX + INCX
   30                 CONTINUE
                      A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
                  ELSE
                      A(J,J) = REAL(A(J,J))
                  END IF
                  JX = JX + INCX
   40         CONTINUE
          END IF
      ELSE
*
*        Form  A  when A is stored in lower triangle.
*
          IF (INCX.EQ.1) THEN
              DO 60 J = 1,N
                  IF (X(J).NE.ZERO) THEN
                      TEMP = ALPHA*CONJG(X(J))
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
                      DO 50 I = J + 1,N
                          A(I,J) = A(I,J) + X(I)*TEMP
   50                 CONTINUE
                  ELSE
                      A(J,J) = REAL(A(J,J))
                  END IF
   60         CONTINUE
          ELSE
              JX = KX
              DO 80 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*CONJG(X(JX))
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
                      IX = JX
                      DO 70 I = J + 1,N
                          IX = IX + INCX
                          A(I,J) = A(I,J) + X(IX)*TEMP
   70                 CONTINUE
                  ELSE
                      A(J,J) = REAL(A(J,J))
                  END IF
                  JX = JX + INCX
   80         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of CHER  .
*
      END