summaryrefslogtreecommitdiff
path: root/BLAS/SRC/cgemv.f
blob: 99bcdcd1abaf4c47204a00e27a43effed7019dca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
*> \brief \b CGEMV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
*       .. Scalar Arguments ..
*       COMPLEX ALPHA,BETA
*       INTEGER INCX,INCY,LDA,M,N
*       CHARACTER TRANS
*       ..
*       .. Array Arguments ..
*       COMPLEX A(LDA,*),X(*),Y(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEMV performs one of the matrix-vector operations
*>
*>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
*>
*>    y := alpha*A**H*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are vectors and A is an
*> m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>           On entry, TRANS specifies the operation to be performed as
*>           follows:
*>
*>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*>
*>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
*>
*>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry, M specifies the number of rows of the matrix A.
*>           M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the number of columns of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension ( LDA, N )
*>           Before entry, the leading m by n part of the array A must
*>           contain the matrix of coefficients.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. LDA must be at least
*>           max( 1, m ).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array, dimension at least
*>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*>           and at least
*>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*>           Before entry, the incremented array X must contain the
*>           vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is COMPLEX
*>           On entry, BETA specifies the scalar beta. When BETA is
*>           supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*>          Y is COMPLEX array, dimension at least
*>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*>           and at least
*>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*>           Before entry with BETA non-zero, the incremented array Y
*>           must contain the vector y. On exit, Y is overwritten by the
*>           updated vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*>          INCY is INTEGER
*>           On entry, INCY specifies the increment for the elements of
*>           Y. INCY must not be zero.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_blas_level2
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 2 Blas routine.
*>  The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
*  -- Reference BLAS level2 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
*     ..
*     .. Array Arguments ..
      COMPLEX A(LDA,*),X(*),Y(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX ONE
      PARAMETER (ONE= (1.0E+0,0.0E+0))
      COMPLEX ZERO
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*     .. Local Scalars ..
      COMPLEX TEMP
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
      LOGICAL NOCONJ
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CONJG,MAX
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
     +    .NOT.LSAME(TRANS,'C')) THEN
          INFO = 1
      ELSE IF (M.LT.0) THEN
          INFO = 2
      ELSE IF (N.LT.0) THEN
          INFO = 3
      ELSE IF (LDA.LT.MAX(1,M)) THEN
          INFO = 6
      ELSE IF (INCX.EQ.0) THEN
          INFO = 8
      ELSE IF (INCY.EQ.0) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('CGEMV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
      NOCONJ = LSAME(TRANS,'T')
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF (LSAME(TRANS,'N')) THEN
          LENX = N
          LENY = M
      ELSE
          LENX = M
          LENY = N
      END IF
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (LENX-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (LENY-1)*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := beta*y.
*
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,LENY
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,LENY
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,LENY
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,LENY
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  y := alpha*A*x + y.
*
          JX = KX
          IF (INCY.EQ.1) THEN
              DO 60 J = 1,N
                  TEMP = ALPHA*X(JX)
                  DO 50 I = 1,M
                      Y(I) = Y(I) + TEMP*A(I,J)
   50             CONTINUE
                  JX = JX + INCX
   60         CONTINUE
          ELSE
              DO 80 J = 1,N
                  TEMP = ALPHA*X(JX)
                  IY = KY
                  DO 70 I = 1,M
                      Y(IY) = Y(IY) + TEMP*A(I,J)
                      IY = IY + INCY
   70             CONTINUE
                  JX = JX + INCX
   80         CONTINUE
          END IF
      ELSE
*
*        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
*
          JY = KY
          IF (INCX.EQ.1) THEN
              DO 110 J = 1,N
                  TEMP = ZERO
                  IF (NOCONJ) THEN
                      DO 90 I = 1,M
                          TEMP = TEMP + A(I,J)*X(I)
   90                 CONTINUE
                  ELSE
                      DO 100 I = 1,M
                          TEMP = TEMP + CONJG(A(I,J))*X(I)
  100                 CONTINUE
                  END IF
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  110         CONTINUE
          ELSE
              DO 140 J = 1,N
                  TEMP = ZERO
                  IX = KX
                  IF (NOCONJ) THEN
                      DO 120 I = 1,M
                          TEMP = TEMP + A(I,J)*X(IX)
                          IX = IX + INCX
  120                 CONTINUE
                  ELSE
                      DO 130 I = 1,M
                          TEMP = TEMP + CONJG(A(I,J))*X(IX)
                          IX = IX + INCX
  130                 CONTINUE
                  END IF
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  140         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of CGEMV .
*
      END