1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
*> \brief \b CAXPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* COMPLEX CA
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CAXPY constant times a vector plus a vector.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine (version 3.7.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
COMPLEX CA
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY
* ..
* .. External Functions ..
REAL SCABS1
EXTERNAL SCABS1
* ..
IF (N.LE.0) RETURN
IF (SCABS1(CA).EQ.0.0E+0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CY(I) = CY(I) + CA*CX(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
*
RETURN
END
|