*> \brief \b ZLAROT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, * XRIGHT ) * * .. Scalar Arguments .. * LOGICAL LLEFT, LRIGHT, LROWS * INTEGER LDA, NL * COMPLEX*16 C, S, XLEFT, XRIGHT * .. * .. Array Arguments .. * COMPLEX*16 A( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLAROT applies a (Givens) rotation to two adjacent rows or *> columns, where one element of the first and/or last column/row *> for use on matrices stored in some format other than GE, so *> that elements of the matrix may be used or modified for which *> no array element is provided. *> *> One example is a symmetric matrix in SB format (bandwidth=4), for *> which UPLO='L': Two adjacent rows will have the format: *> *> row j: C> C> C> C> C> . . . . *> row j+1: C> C> C> C> C> . . . . *> *> '*' indicates elements for which storage is provided, *> '.' indicates elements for which no storage is provided, but *> are not necessarily zero; their values are determined by *> symmetry. ' ' indicates elements which are necessarily zero, *> and have no storage provided. *> *> Those columns which have two '*'s can be handled by DROT. *> Those columns which have no '*'s can be ignored, since as long *> as the Givens rotations are carefully applied to preserve *> symmetry, their values are determined. *> Those columns which have one '*' have to be handled separately, *> by using separate variables "p" and "q": *> *> row j: C> C> C> C> C> p . . . *> row j+1: q C> C> C> C> C> . . . . *> *> The element p would have to be set correctly, then that column *> is rotated, setting p to its new value. The next call to *> ZLAROT would rotate columns j and j+1, using p, and restore *> symmetry. The element q would start out being zero, and be *> made non-zero by the rotation. Later, rotations would presumably *> be chosen to zero q out. *> *> Typical Calling Sequences: rotating the i-th and (i+1)-st rows. *> ------- ------- --------- *> *> General dense matrix: *> *> CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, *> A(i,1),LDA, DUMMY, DUMMY) *> *> General banded matrix in GB format: *> *> j = MAX(1, i-KL ) *> NL = MIN( N, i+KU+1 ) + 1-j *> CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, *> A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) *> *> [ note that i+1-j is just MIN(i,KL+1) ] *> *> Symmetric banded matrix in SY format, bandwidth K, *> lower triangle only: *> *> j = MAX(1, i-K ) *> NL = MIN( K+1, i ) + 1 *> CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, *> A(i,j), LDA, XLEFT, XRIGHT ) *> *> Same, but upper triangle only: *> *> NL = MIN( K+1, N-i ) + 1 *> CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, *> A(i,i), LDA, XLEFT, XRIGHT ) *> *> Symmetric banded matrix in SB format, bandwidth K, *> lower triangle only: *> *> [ same as for SY, except:] *> . . . . *> A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) *> *> [ note that i+1-j is just MIN(i,K+1) ] *> *> Same, but upper triangle only: *> . . . *> A(K+1,i), LDA-1, XLEFT, XRIGHT ) *> *> Rotating columns is just the transpose of rotating rows, except *> for GB and SB: (rotating columns i and i+1) *> *> GB: *> j = MAX(1, i-KU ) *> NL = MIN( N, i+KL+1 ) + 1-j *> CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, *> A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) *> *> [note that KU+j+1-i is just MAX(1,KU+2-i)] *> *> SB: (upper triangle) *> *> . . . . . . *> A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) *> *> SB: (lower triangle) *> *> . . . . . . *> A(1,i),LDA-1, XTOP, XBOTTM ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> LROWS - LOGICAL *> If .TRUE., then ZLAROT will rotate two rows. If .FALSE., *> then it will rotate two columns. *> Not modified. *> *> LLEFT - LOGICAL *> If .TRUE., then XLEFT will be used instead of the *> corresponding element of A for the first element in the *> second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) *> If .FALSE., then the corresponding element of A will be *> used. *> Not modified. *> *> LRIGHT - LOGICAL *> If .TRUE., then XRIGHT will be used instead of the *> corresponding element of A for the last element in the *> first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If *> .FALSE., then the corresponding element of A will be used. *> Not modified. *> *> NL - INTEGER *> The length of the rows (if LROWS=.TRUE.) or columns (if *> LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are *> used, the columns/rows they are in should be included in *> NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at *> least 2. The number of rows/columns to be rotated *> exclusive of those involving XLEFT and/or XRIGHT may *> not be negative, i.e., NL minus how many of LLEFT and *> LRIGHT are .TRUE. must be at least zero; if not, XERBLA *> will be called. *> Not modified. *> *> C, S - COMPLEX*16 *> Specify the Givens rotation to be applied. If LROWS is *> true, then the matrix ( c s ) *> ( _ _ ) *> (-s c ) is applied from the left; *> if false, then the transpose (not conjugated) thereof is *> applied from the right. Note that in contrast to the *> output of ZROTG or to most versions of ZROT, both C and S *> are complex. For a Givens rotation, |C|**2 + |S|**2 should *> be 1, but this is not checked. *> Not modified. *> *> A - COMPLEX*16 array. *> The array containing the rows/columns to be rotated. The *> first element of A should be the upper left element to *> be rotated. *> Read and modified. *> *> LDA - INTEGER *> The "effective" leading dimension of A. If A contains *> a matrix stored in GE, HE, or SY format, then this is just *> the leading dimension of A as dimensioned in the calling *> routine. If A contains a matrix stored in band (GB, HB, or *> SB) format, then this should be *one less* than the leading *> dimension used in the calling routine. Thus, if A were *> dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the *> j-th element in the first of the two rows to be rotated, *> and A(2,j) would be the j-th in the second, regardless of *> how the array may be stored in the calling routine. [A *> cannot, however, actually be dimensioned thus, since for *> band format, the row number may exceed LDA, which is not *> legal FORTRAN.] *> If LROWS=.TRUE., then LDA must be at least 1, otherwise *> it must be at least NL minus the number of .TRUE. values *> in XLEFT and XRIGHT. *> Not modified. *> *> XLEFT - COMPLEX*16 *> If LLEFT is .TRUE., then XLEFT will be used and modified *> instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) *> (if LROWS=.FALSE.). *> Read and modified. *> *> XRIGHT - COMPLEX*16 *> If LRIGHT is .TRUE., then XRIGHT will be used and modified *> instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) *> (if LROWS=.FALSE.). *> Read and modified. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_matgen * * ===================================================================== SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, $ XRIGHT ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. LOGICAL LLEFT, LRIGHT, LROWS INTEGER LDA, NL COMPLEX*16 C, S, XLEFT, XRIGHT * .. * .. Array Arguments .. COMPLEX*16 A( * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER IINC, INEXT, IX, IY, IYT, J, NT COMPLEX*16 TEMPX * .. * .. Local Arrays .. COMPLEX*16 XT( 2 ), YT( 2 ) * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. * .. Executable Statements .. * * Set up indices, arrays for ends * IF( LROWS ) THEN IINC = LDA INEXT = 1 ELSE IINC = 1 INEXT = LDA END IF * IF( LLEFT ) THEN NT = 1 IX = 1 + IINC IY = 2 + LDA XT( 1 ) = A( 1 ) YT( 1 ) = XLEFT ELSE NT = 0 IX = 1 IY = 1 + INEXT END IF * IF( LRIGHT ) THEN IYT = 1 + INEXT + ( NL-1 )*IINC NT = NT + 1 XT( NT ) = XRIGHT YT( NT ) = A( IYT ) END IF * * Check for errors * IF( NL.LT.NT ) THEN CALL XERBLA( 'ZLAROT', 4 ) RETURN END IF IF( LDA.LE.0 .OR. ( .NOT.LROWS .AND. LDA.LT.NL-NT ) ) THEN CALL XERBLA( 'ZLAROT', 8 ) RETURN END IF * * Rotate * * ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S * DO 10 J = 0, NL - NT - 1 TEMPX = C*A( IX+J*IINC ) + S*A( IY+J*IINC ) A( IY+J*IINC ) = -DCONJG( S )*A( IX+J*IINC ) + $ DCONJG( C )*A( IY+J*IINC ) A( IX+J*IINC ) = TEMPX 10 CONTINUE * * ZROT( NT, XT,1, YT,1, C, S ) with complex C, S * DO 20 J = 1, NT TEMPX = C*XT( J ) + S*YT( J ) YT( J ) = -DCONJG( S )*XT( J ) + DCONJG( C )*YT( J ) XT( J ) = TEMPX 20 CONTINUE * * Stuff values back into XLEFT, XRIGHT, etc. * IF( LLEFT ) THEN A( 1 ) = XT( 1 ) XLEFT = YT( 1 ) END IF * IF( LRIGHT ) THEN XRIGHT = XT( NT ) A( IYT ) = YT( NT ) END IF * RETURN * * End of ZLAROT * END