*> \brief \b ZQRT17 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * DOUBLE PRECISION FUNCTION ZQRT17( TRANS, IRESID, M, N, NRHS, A, * LDA, X, LDX, B, LDB, C, WORK, LWORK ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER IRESID, LDA, LDB, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDB, * ), * $ WORK( LWORK ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZQRT17 computes the ratio *> *> || R'*op(A) ||/(||A||*alpha*max(M,N,NRHS)*eps) *> *> where R = op(A)*X - B, op(A) is A or A', and *> *> alpha = ||B|| if IRESID = 1 (zero-residual problem) *> alpha = ||R|| if IRESID = 2 (otherwise). *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies whether or not the transpose of A is used. *> = 'N': No transpose, op(A) = A. *> = 'C': Conjugate transpose, op(A) = A'. *> \endverbatim *> *> \param[in] IRESID *> \verbatim *> IRESID is INTEGER *> IRESID = 1 indicates zero-residual problem. *> IRESID = 2 indicates non-zero residual. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> If TRANS = 'N', the number of rows of the matrix B. *> If TRANS = 'C', the number of rows of the matrix X. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. *> If TRANS = 'N', the number of rows of the matrix X. *> If TRANS = 'C', the number of rows of the matrix B. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of the matrices X and B. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The m-by-n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= M. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX*16 array, dimension (LDX,NRHS) *> If TRANS = 'N', the n-by-nrhs matrix X. *> If TRANS = 'C', the m-by-nrhs matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. *> If TRANS = 'N', LDX >= N. *> If TRANS = 'C', LDX >= M. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> If TRANS = 'N', the m-by-nrhs matrix B. *> If TRANS = 'C', the n-by-nrhs matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. *> If TRANS = 'N', LDB >= M. *> If TRANS = 'C', LDB >= N. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is COMPLEX*16 array, dimension (LDB,NRHS) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. LWORK >= NRHS*(M+N). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2015 * *> \ingroup complex16_lin * * ===================================================================== DOUBLE PRECISION FUNCTION ZQRT17( TRANS, IRESID, M, N, NRHS, A, $ LDA, X, LDX, B, LDB, C, WORK, LWORK ) * * -- LAPACK test routine (version 3.6.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2015 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IRESID, LDA, LDB, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDB, * ), $ WORK( LWORK ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER INFO, ISCL, NCOLS, NROWS DOUBLE PRECISION BIGNUM, ERR, NORMA, NORMB, NORMRS, NORMX, $ SMLNUM * .. * .. Local Arrays .. DOUBLE PRECISION RWORK( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL LSAME, DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMM, ZLACPY, ZLASCL * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, MAX * .. * .. Executable Statements .. * ZQRT17 = ZERO * IF( LSAME( TRANS, 'N' ) ) THEN NROWS = M NCOLS = N ELSE IF( LSAME( TRANS, 'C' ) ) THEN NROWS = N NCOLS = M ELSE CALL XERBLA( 'ZQRT17', 1 ) RETURN END IF * IF( LWORK.LT.NCOLS*NRHS ) THEN CALL XERBLA( 'ZQRT17', 13 ) RETURN END IF * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) $ RETURN * NORMA = ZLANGE( 'One-norm', M, N, A, LDA, RWORK ) SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) BIGNUM = ONE / SMLNUM ISCL = 0 * * compute residual and scale it * CALL ZLACPY( 'All', NROWS, NRHS, B, LDB, C, LDB ) CALL ZGEMM( TRANS, 'No transpose', NROWS, NRHS, NCOLS, $ DCMPLX( -ONE ), A, LDA, X, LDX, DCMPLX( ONE ), C, $ LDB ) NORMRS = ZLANGE( 'Max', NROWS, NRHS, C, LDB, RWORK ) IF( NORMRS.GT.SMLNUM ) THEN ISCL = 1 CALL ZLASCL( 'General', 0, 0, NORMRS, ONE, NROWS, NRHS, C, LDB, $ INFO ) END IF * * compute R'*A * CALL ZGEMM( 'Conjugate transpose', TRANS, NRHS, NCOLS, NROWS, $ DCMPLX( ONE ), C, LDB, A, LDA, DCMPLX( ZERO ), WORK, $ NRHS ) * * compute and properly scale error * ERR = ZLANGE( 'One-norm', NRHS, NCOLS, WORK, NRHS, RWORK ) IF( NORMA.NE.ZERO ) $ ERR = ERR / NORMA * IF( ISCL.EQ.1 ) $ ERR = ERR*NORMRS * IF( IRESID.EQ.1 ) THEN NORMB = ZLANGE( 'One-norm', NROWS, NRHS, B, LDB, RWORK ) IF( NORMB.NE.ZERO ) $ ERR = ERR / NORMB ELSE IF( NORMRS.NE.ZERO ) $ ERR = ERR / NORMRS END IF * ZQRT17 = ERR / ( DLAMCH( 'Epsilon' )*DBLE( MAX( M, N, NRHS ) ) ) RETURN * * End of ZQRT17 * END