*> \brief \b ZERRGT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZERRGT( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZERRGT tests the error exits for the COMPLEX*16 tridiagonal *> routines. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZERRGT( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 2 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO DOUBLE PRECISION ANORM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) DOUBLE PRECISION D( NMAX ), DF( NMAX ), R1( NMAX ), R2( NMAX ), $ RW( NMAX ) COMPLEX*16 B( NMAX ), DL( NMAX ), DLF( NMAX ), DU( NMAX ), $ DU2( NMAX ), DUF( NMAX ), E( NMAX ), $ EF( NMAX ), W( NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, ZGTCON, ZGTRFS, ZGTTRF, ZGTTRS, $ ZPTCON, ZPTRFS, ZPTTRF, ZPTTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) DO 10 I = 1, NMAX D( I ) = 1.D0 E( I ) = 2.D0 DL( I ) = 3.D0 DU( I ) = 4.D0 10 CONTINUE ANORM = 1.0D0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * Test error exits for the general tridiagonal routines. * * ZGTTRF * SRNAMT = 'ZGTTRF' INFOT = 1 CALL ZGTTRF( -1, DL, E, DU, DU2, IP, INFO ) CALL CHKXER( 'ZGTTRF', INFOT, NOUT, LERR, OK ) * * ZGTTRS * SRNAMT = 'ZGTTRS' INFOT = 1 CALL ZGTTRS( '/', 0, 0, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'ZGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGTTRS( 'N', -1, 0, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'ZGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGTTRS( 'N', 0, -1, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'ZGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGTTRS( 'N', 2, 1, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'ZGTTRS', INFOT, NOUT, LERR, OK ) * * ZGTRFS * SRNAMT = 'ZGTRFS' INFOT = 1 CALL ZGTRFS( '/', 0, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1, $ X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'ZGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGTRFS( 'N', -1, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B, $ 1, X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'ZGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGTRFS( 'N', 0, -1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, $ 1, X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'ZGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1, $ X, 2, R1, R2, W, RW, INFO ) CALL CHKXER( 'ZGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL ZGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 2, $ X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'ZGTRFS', INFOT, NOUT, LERR, OK ) * * ZGTCON * SRNAMT = 'ZGTCON' INFOT = 1 CALL ZGTCON( '/', 0, DL, E, DU, DU2, IP, ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'ZGTCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGTCON( 'I', -1, DL, E, DU, DU2, IP, ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'ZGTCON', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGTCON( 'I', 0, DL, E, DU, DU2, IP, -ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'ZGTCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * Test error exits for the positive definite tridiagonal * routines. * * ZPTTRF * SRNAMT = 'ZPTTRF' INFOT = 1 CALL ZPTTRF( -1, D, E, INFO ) CALL CHKXER( 'ZPTTRF', INFOT, NOUT, LERR, OK ) * * ZPTTRS * SRNAMT = 'ZPTTRS' INFOT = 1 CALL ZPTTRS( '/', 1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'ZPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPTTRS( 'U', -1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'ZPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPTTRS( 'U', 0, -1, D, E, X, 1, INFO ) CALL CHKXER( 'ZPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZPTTRS( 'U', 2, 1, D, E, X, 1, INFO ) CALL CHKXER( 'ZPTTRS', INFOT, NOUT, LERR, OK ) * * ZPTRFS * SRNAMT = 'ZPTRFS' INFOT = 1 CALL ZPTRFS( '/', 1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'ZPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPTRFS( 'U', -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'ZPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPTRFS( 'U', 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'ZPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZPTRFS( 'U', 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'ZPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZPTRFS( 'U', 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'ZPTRFS', INFOT, NOUT, LERR, OK ) * * ZPTCON * SRNAMT = 'ZPTCON' INFOT = 1 CALL ZPTCON( -1, D, E, ANORM, RCOND, RW, INFO ) CALL CHKXER( 'ZPTCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPTCON( 0, D, E, -ANORM, RCOND, RW, INFO ) CALL CHKXER( 'ZPTCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of ZERRGT * END