*> \brief \b ZDRVLS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B, * COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NM, NN, NNB, NNS, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ), * $ NVAL( * ), NXVAL( * ) * DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * ) * COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZDRVLS tests the least squares driver routines ZGELS, CGELSX, CGELSS, *> ZGELSY and CGELSD. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> The matrix of type j is generated as follows: *> j=1: A = U*D*V where U and V are random unitary matrices *> and D has random entries (> 0.1) taken from a uniform *> distribution (0,1). A is full rank. *> j=2: The same of 1, but A is scaled up. *> j=3: The same of 1, but A is scaled down. *> j=4: A = U*D*V where U and V are random unitary matrices *> and D has 3*min(M,N)/4 random entries (> 0.1) taken *> from a uniform distribution (0,1) and the remaining *> entries set to 0. A is rank-deficient. *> j=5: The same of 4, but A is scaled up. *> j=6: The same of 5, but A is scaled down. *> \endverbatim *> *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB and NX contained in the *> vectors NBVAL and NXVAL. The blocking parameters are used *> in pairs (NB,NX). *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NXVAL *> \verbatim *> NXVAL is INTEGER array, dimension (NNB) *> The values of the crossover point NX. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (MMAX*NMAX) *> where MMAX is the maximum value of M in MVAL and NMAX is the *> maximum value of N in NVAL. *> \endverbatim *> *> \param[out] COPYA *> \verbatim *> COPYA is COMPLEX*16 array, dimension (MMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (MMAX*NSMAX) *> where MMAX is the maximum value of M in MVAL and NSMAX is the *> maximum value of NRHS in NSVAL. *> \endverbatim *> *> \param[out] COPYB *> \verbatim *> COPYB is COMPLEX*16 array, dimension (MMAX*NSMAX) *> \endverbatim *> *> \param[out] C *> \verbatim *> C is COMPLEX*16 array, dimension (MMAX*NSMAX) *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension *> (min(MMAX,NMAX)) *> \endverbatim *> *> \param[out] COPYS *> \verbatim *> COPYS is DOUBLE PRECISION array, dimension *> (min(MMAX,NMAX)) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension *> (MMAX*NMAX + 4*NMAX + MMAX). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (5*NMAX-1) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (15*NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B, $ COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NN, NNB, NNS, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ), $ NVAL( * ), NXVAL( * ) DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * ) COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTESTS PARAMETER ( NTESTS = 18 ) INTEGER SMLSIZ PARAMETER ( SMLSIZ = 25 ) DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) COMPLEX*16 CONE, CZERO PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), $ CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. CHARACTER TRANS CHARACTER*3 PATH INTEGER CRANK, I, IM, IN, INB, INFO, INS, IRANK, $ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK, $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, $ NFAIL, NRHS, NROWS, NRUN, RANK DOUBLE PRECISION EPS, NORMA, NORMB, RCOND * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17 EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17 * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV, $ ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS, ZGELSX, $ ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15, $ ZQRT16 * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'LS' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = DLAMCH( 'Epsilon' ) * * Threshold for rank estimation * RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2 * * Test the error exits * CALL XLAENV( 9, SMLSIZ ) IF( TSTERR ) $ CALL ZERRLS( PATH, NOUT ) * * Print the header if NM = 0 or NN = 0 and THRESH = 0. * IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO ) $ CALL ALAHD( NOUT, PATH ) INFOT = 0 * DO 140 IM = 1, NM M = MVAL( IM ) LDA = MAX( 1, M ) * DO 130 IN = 1, NN N = NVAL( IN ) MNMIN = MIN( M, N ) LDB = MAX( 1, M, N ) * DO 120 INS = 1, NNS NRHS = NSVAL( INS ) LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ), $ M*N+4*MNMIN+MAX( M, N ), 2*N+M ) * DO 110 IRANK = 1, 2 DO 100 ISCALE = 1, 3 ITYPE = ( IRANK-1 )*3 + ISCALE IF( .NOT.DOTYPE( ITYPE ) ) $ GO TO 100 * IF( IRANK.EQ.1 ) THEN * * Test ZGELS * * Generate a matrix of scaling type ISCALE * CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) DO 40 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * DO 30 ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M NCOLS = N ELSE TRANS = 'C' NROWS = N NCOLS = M END IF LDWORK = MAX( 1, NCOLS ) * * Set up a consistent rhs * IF( NCOLS.GT.0 ) THEN CALL ZLARNV( 2, ISEED, NCOLS*NRHS, $ WORK ) CALL ZDSCAL( NCOLS*NRHS, $ ONE / DBLE( NCOLS ), WORK, $ 1 ) END IF CALL ZGEMM( TRANS, 'No transpose', NROWS, $ NRHS, NCOLS, CONE, COPYA, LDA, $ WORK, LDWORK, CZERO, B, LDB ) CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB, $ COPYB, LDB ) * * Solve LS or overdetermined system * IF( M.GT.0 .AND. N.GT.0 ) THEN CALL ZLACPY( 'Full', M, N, COPYA, LDA, $ A, LDA ) CALL ZLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, B, LDB ) END IF SRNAMT = 'ZGELS ' CALL ZGELS( TRANS, M, N, NRHS, A, LDA, B, $ LDB, WORK, LWORK, INFO ) * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGELS ', INFO, 0, $ TRANS, M, N, NRHS, -1, NB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * * Check correctness of results * LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL ZLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL ZQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, RWORK, $ RESULT( 1 ) ) * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * * Solving LS system * RESULT( 2 ) = ZQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, $ LWORK ) ELSE * * Solving overdetermined system * RESULT( 2 ) = ZQRT14( TRANS, M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) END IF * * Print information about the tests that * did not pass the threshold. * DO 20 K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )TRANS, M, $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 20 CONTINUE NRUN = NRUN + 2 30 CONTINUE 40 CONTINUE END IF * * Generate a matrix of scaling type ISCALE and rank * type IRANK. * CALL ZQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA, $ COPYB, LDB, COPYS, RANK, NORMA, NORMB, $ ISEED, WORK, LWORK ) * * workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) * DO 50 J = 1, N IWORK( J ) = 0 50 CONTINUE LDWORK = MAX( 1, M ) * * Test ZGELSX * * ZGELSX: Compute the minimum-norm solution X * to min( norm( A * X - B ) ) * using a complete orthogonal factorization. * CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA ) CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB ) * SRNAMT = 'ZGELSX' CALL ZGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK, $ RCOND, CRANK, WORK, RWORK, INFO ) * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGELSX', INFO, 0, ' ', M, N, $ NRHS, -1, NB, ITYPE, NFAIL, NERRS, $ NOUT ) * * workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS ) * * Test 3: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA, COPYS, $ WORK, LWORK, RWORK ) * * Test 4: Compute error in solution * workspace: M*NRHS + M * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, $ RESULT( 4 ) ) * * Test 5: Check norm of r'*A * workspace: NRHS*(M+N) * RESULT( 5 ) = ZERO IF( M.GT.CRANK ) $ RESULT( 5 ) = ZQRT17( 'No transpose', 1, M, N, $ NRHS, COPYA, LDA, B, LDB, COPYB, $ LDB, C, WORK, LWORK ) * * Test 6: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * RESULT( 6 ) = ZERO * IF( N.GT.CRANK ) $ RESULT( 6 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, WORK, $ LWORK ) * * Print information about the tests that did not * pass the threshold. * DO 60 K = 3, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )M, N, NRHS, 0, $ ITYPE, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 60 CONTINUE NRUN = NRUN + 4 * * Loop for testing different block sizes. * DO 90 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * * Test ZGELSY * * ZGELSY: Compute the minimum-norm solution * X to min( norm( A * X - B ) ) * using the rank-revealing orthogonal * factorization. * CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA ) CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, $ LDB ) * * Initialize vector IWORK. * DO 70 J = 1, N IWORK( J ) = 0 70 CONTINUE * * Set LWLSY to the adequate value. * LWLSY = MNMIN + MAX( 2*MNMIN, NB*( N+1 ), $ MNMIN+NB*NRHS ) LWLSY = MAX( 1, LWLSY ) * SRNAMT = 'ZGELSY' CALL ZGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK, $ RCOND, CRANK, WORK, LWLSY, RWORK, $ INFO ) IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGELSY', INFO, 0, ' ', M, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * * workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS) * * Test 7: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA, $ COPYS, WORK, LWORK, RWORK ) * * Test 8: Compute error in solution * workspace: M*NRHS + M * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, $ RESULT( 8 ) ) * * Test 9: Check norm of r'*A * workspace: NRHS*(M+N) * RESULT( 9 ) = ZERO IF( M.GT.CRANK ) $ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * * Test 10: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * RESULT( 10 ) = ZERO * IF( N.GT.CRANK ) $ RESULT( 10 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Test ZGELSS * * ZGELSS: Compute the minimum-norm solution * X to min( norm( A * X - B ) ) * using the SVD. * CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA ) CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, $ LDB ) SRNAMT = 'ZGELSS' CALL ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, $ RCOND, CRANK, WORK, LWORK, RWORK, $ INFO ) * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGELSS', INFO, 0, ' ', M, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * * workspace used: 3*min(m,n) + * max(2*min(m,n),nrhs,max(m,n)) * * Test 11: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) RESULT( 11 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE RESULT( 11 ) = ZERO END IF * * Test 12: Compute error in solution * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, $ RESULT( 12 ) ) * * Test 13: Check norm of r'*A * RESULT( 13 ) = ZERO IF( M.GT.CRANK ) $ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * * Test 14: Check if x is in the rowspace of A * RESULT( 14 ) = ZERO IF( N.GT.CRANK ) $ RESULT( 14 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Test ZGELSD * * ZGELSD: Compute the minimum-norm solution X * to min( norm( A * X - B ) ) using a * divide and conquer SVD. * CALL XLAENV( 9, 25 ) * CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA ) CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, $ LDB ) * SRNAMT = 'ZGELSD' CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, $ RCOND, CRANK, WORK, LWORK, RWORK, $ IWORK, INFO ) IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * * Test 15: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) RESULT( 15 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE RESULT( 15 ) = ZERO END IF * * Test 16: Compute error in solution * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, $ RESULT( 16 ) ) * * Test 17: Check norm of r'*A * RESULT( 17 ) = ZERO IF( M.GT.CRANK ) $ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * * Test 18: Check if x is in the rowspace of A * RESULT( 18 ) = ZERO IF( N.GT.CRANK ) $ RESULT( 18 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Print information about the tests that did not * pass the threshold. * DO 80 K = 7, NTESTS IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB, $ ITYPE, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 80 CONTINUE NRUN = NRUN + 12 * 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE * * Print a summary of the results. * CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4, $ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 ) 9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4, $ ', type', I2, ', test(', I2, ')=', G12.5 ) RETURN * * End of ZDRVLS * END