*> \brief \b ZDRVHEX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, * NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NOUT, NRHS * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NVAL( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZDRVHE tests the driver routines ZHESV, -SVX, and -SVXX. *> *> Note that this file is used only when the XBLAS are available, *> otherwise zdrvhe.f defines this subroutine. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand side vectors to be generated for *> each linear system. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension *> (NMAX*max(2,NRHS)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date April 2012 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, $ NOUT ) * * -- LAPACK test routine (version 3.4.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * April 2012 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NOUT, NRHS DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NVAL( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) INTEGER NTYPES, NTESTS PARAMETER ( NTYPES = 10, NTESTS = 6 ) INTEGER NFACT PARAMETER ( NFACT = 2 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE CHARACTER*3 PATH INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT, $ N_ERR_BNDS DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC, $ RPVGRW_SVXX * .. * .. Local Arrays .. CHARACTER FACTS( NFACT ), UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ), BERR( NRHS ), $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 ) * .. * .. External Functions .. DOUBLE PRECISION DGET06, ZLANHE EXTERNAL DGET06, ZLANHE * .. * .. External Subroutines .. EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04, $ ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY, $ ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02, $ ZPOT05, ZHESVXX * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, MAX, MIN * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Z' PATH( 2: 3 ) = 'HE' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE LWORK = MAX( 2*NMAX, NMAX*NRHS ) * * Test the error exits * IF( TSTERR ) $ CALL ZERRVX( PATH, NOUT ) INFOT = 0 * * Set the block size and minimum block size for testing. * NB = 1 NBMIN = 2 CALL XLAENV( 1, NB ) CALL XLAENV( 2, NBMIN ) * * Do for each value of N in NVAL * DO 180 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * DO 170 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 170 * * Skip types 3, 4, 5, or 6 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 170 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 160 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Set up parameters with ZLATB4 and generate a test matrix * with ZLATMS. * CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) * SRNAMT = 'ZLATMS' CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, $ INFO ) * * Check error code from ZLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 160 END IF * * For types 3-6, zero one or more rows and columns of the * matrix to test that INFO is returned correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * IF( IMAT.LT.6 ) THEN * * Set row and column IZERO to zero. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*LDA DO 20 I = 1, IZERO - 1 A( IOFF+I ) = ZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = ZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = ZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = ZERO 50 CONTINUE END IF ELSE IOFF = 0 IF( IUPLO.EQ.1 ) THEN * * Set the first IZERO rows and columns to zero. * DO 70 J = 1, N I2 = MIN( J, IZERO ) DO 60 I = 1, I2 A( IOFF+I ) = ZERO 60 CONTINUE IOFF = IOFF + LDA 70 CONTINUE ELSE * * Set the last IZERO rows and columns to zero. * DO 90 J = 1, N I1 = MAX( J, IZERO ) DO 80 I = I1, N A( IOFF+I ) = ZERO 80 CONTINUE IOFF = IOFF + LDA 90 CONTINUE END IF END IF ELSE IZERO = 0 END IF * * Set the imaginary part of the diagonals. * CALL ZLAIPD( N, A, LDA+1, 0 ) * DO 150 IFACT = 1, NFACT * * Do first for FACT = 'F', then for other values. * FACT = FACTS( IFACT ) * * Compute the condition number for comparison with * the value returned by ZHESVX. * IF( ZEROT ) THEN IF( IFACT.EQ.1 ) $ GO TO 150 RCONDC = ZERO * ELSE IF( IFACT.EQ.1 ) THEN * * Compute the 1-norm of A. * ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK ) * * Factor the matrix A. * CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, WORK, $ LWORK, INFO ) * * Compute inv(A) and take its norm. * CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) LWORK = (N+NB+1)*(NB+3) CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK, $ LWORK, INFO ) AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK ) * * Compute the 1-norm condition number of A. * IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDC = ONE ELSE RCONDC = ( ONE / ANORM ) / AINVNM END IF END IF * * Form an exact solution and set the right hand side. * SRNAMT = 'ZLARHS' CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, $ INFO ) XTYPE = 'C' * * --- Test ZHESV --- * IF( IFACT.EQ.2 ) THEN CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * * Factor the matrix and solve the system using ZHESV. * SRNAMT = 'ZHESV ' CALL ZHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, $ LDA, WORK, LWORK, INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 100 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 100 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 100 END IF END IF * * Check error code from ZHESV . * IF( INFO.NE.K ) THEN CALL ALAERH( PATH, 'ZHESV ', INFO, K, UPLO, N, $ N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) GO TO 120 ELSE IF( INFO.NE.0 ) THEN GO TO 120 END IF * * Reconstruct matrix from factors and compute * residual. * CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, $ AINV, LDA, RWORK, RESULT( 1 ) ) * * Compute residual of the computed solution. * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 2 ) ) * * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) NT = 3 * * Print information about the tests that did not pass * the threshold. * DO 110 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )'ZHESV ', UPLO, N, $ IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 110 CONTINUE NRUN = NRUN + NT 120 CONTINUE END IF * * --- Test ZHESVX --- * IF( IFACT.EQ.2 ) $ CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ), $ DCMPLX( ZERO ), AFAC, LDA ) CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ), $ DCMPLX( ZERO ), X, LDA ) * * Solve the system and compute the condition number and * error bounds using ZHESVX. * SRNAMT = 'ZHESVX' CALL ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, $ IWORK, B, LDA, X, LDA, RCOND, RWORK, $ RWORK( NRHS+1 ), WORK, LWORK, $ RWORK( 2*NRHS+1 ), INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 130 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 130 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 130 END IF END IF * * Check the error code from ZHESVX. * IF( INFO.NE.K ) THEN CALL ALAERH( PATH, 'ZHESVX', INFO, K, FACT // UPLO, $ N, N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) GO TO 150 END IF * IF( INFO.EQ.0 ) THEN IF( IFACT.GE.2 ) THEN * * Reconstruct matrix from factors and compute * residual. * CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, $ AINV, LDA, RWORK( 2*NRHS+1 ), $ RESULT( 1 ) ) K1 = 1 ELSE K1 = 2 END IF * * Compute residual of the computed solution. * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) * * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) * * Check the error bounds from iterative refinement. * CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, $ XACT, LDA, RWORK, RWORK( NRHS+1 ), $ RESULT( 4 ) ) ELSE K1 = 6 END IF * * Compare RCOND from ZHESVX with the computed value * in RCONDC. * RESULT( 6 ) = DGET06( RCOND, RCONDC ) * * Print information about the tests that did not pass * the threshold. * DO 140 K = K1, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )'ZHESVX', FACT, UPLO, $ N, IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 140 CONTINUE NRUN = NRUN + 7 - K1 * * --- Test ZHESVXX --- * * Restore the matrices A and B. * IF( IFACT.EQ.2 ) $ CALL ZLASET( UPLO, N, N, CMPLX( ZERO ), $ CMPLX( ZERO ), AFAC, LDA ) CALL ZLASET( 'Full', N, NRHS, CMPLX( ZERO ), $ CMPLX( ZERO ), X, LDA ) * * Solve the system and compute the condition number * and error bounds using ZHESVXX. * SRNAMT = 'ZHESVXX' N_ERR_BNDS = 3 EQUED = 'N' CALL ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC, $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X, $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS, $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK, $ RWORK(2*NRHS+1), INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 135 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 135 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 135 END IF END IF * * Check the error code from ZHESVXX. * IF( INFO.NE.K .AND. INFO.LE.N) THEN CALL ALAERH( PATH, 'ZHESVXX', INFO, K, $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) GO TO 150 END IF * IF( INFO.EQ.0 ) THEN IF( IFACT.GE.2 ) THEN * * Reconstruct matrix from factors and compute * residual. * CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, $ AINV, LDA, RWORK(2*NRHS+1), $ RESULT( 1 ) ) K1 = 1 ELSE K1 = 2 END IF * * Compute residual of the computed solution. * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) RESULT( 2 ) = 0.0 * * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) * * Check the error bounds from iterative refinement. * CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, $ XACT, LDA, RWORK, RWORK( NRHS+1 ), $ RESULT( 4 ) ) ELSE K1 = 6 END IF * * Compare RCOND from ZHESVXX with the computed value * in RCONDC. * RESULT( 6 ) = DGET06( RCOND, RCONDC ) * * Print information about the tests that did not pass * the threshold. * DO 85 K = K1, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )'ZHESVXX', $ FACT, UPLO, N, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 85 CONTINUE NRUN = NRUN + 7 - K1 * 150 CONTINUE * 160 CONTINUE 170 CONTINUE 180 CONTINUE * * Print a summary of the results. * CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) * * Test Error Bounds from ZHESVXX CALL ZEBCHVXX(THRESH, PATH) 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, $ ', test ', I2, ', ratio =', G12.5 ) 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) RETURN * * End of ZDRVHE * END