*> \brief \b SERRPO * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SERRPO( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SERRPO tests the error exits for the REAL routines *> for symmetric positive definite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SERRPO( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J REAL ANRM, RCOND * .. * .. Local Arrays .. INTEGER IW( NMAX ) REAL A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ R1( NMAX ), R2( NMAX ), W( 3*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, SPBCON, SPBEQU, SPBRFS, SPBTF2, $ SPBTRF, SPBTRS, SPOCON, SPOEQU, SPORFS, SPOTF2, $ SPOTRF, SPOTRI, SPOTRS, SPPCON, SPPEQU, SPPRFS, $ SPPTRF, SPPTRI, SPPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = 1. / REAL( I+J ) AF( I, J ) = 1. / REAL( I+J ) 10 CONTINUE B( J ) = 0. R1( J ) = 0. R2( J ) = 0. W( J ) = 0. X( J ) = 0. IW( J ) = J 20 CONTINUE OK = .TRUE. * IF( LSAMEN( 2, C2, 'PO' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite matrix. * * SPOTRF * SRNAMT = 'SPOTRF' INFOT = 1 CALL SPOTRF( '/', 0, A, 1, INFO ) CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPOTRF( 'U', -1, A, 1, INFO ) CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPOTRF( 'U', 2, A, 1, INFO ) CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK ) * * SPOTF2 * SRNAMT = 'SPOTF2' INFOT = 1 CALL SPOTF2( '/', 0, A, 1, INFO ) CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPOTF2( 'U', -1, A, 1, INFO ) CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPOTF2( 'U', 2, A, 1, INFO ) CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK ) * * SPOTRI * SRNAMT = 'SPOTRI' INFOT = 1 CALL SPOTRI( '/', 0, A, 1, INFO ) CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPOTRI( 'U', -1, A, 1, INFO ) CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPOTRI( 'U', 2, A, 1, INFO ) CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK ) * * SPOTRS * SRNAMT = 'SPOTRS' INFOT = 1 CALL SPOTRS( '/', 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPOTRS( 'U', -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPOTRS( 'U', 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPOTRS( 'U', 2, 1, A, 1, B, 2, INFO ) CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SPOTRS( 'U', 2, 1, A, 2, B, 1, INFO ) CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK ) * * SPORFS * SRNAMT = 'SPORFS' INFOT = 1 CALL SPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL SPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK ) * * SPOCON * SRNAMT = 'SPOCON' INFOT = 1 CALL SPOCON( '/', 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPOCON( 'U', -1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPOCON( 'U', 2, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK ) * * SPOEQU * SRNAMT = 'SPOEQU' INFOT = 1 CALL SPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPOEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPOEQU', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite packed matrix. * * SPPTRF * SRNAMT = 'SPPTRF' INFOT = 1 CALL SPPTRF( '/', 0, A, INFO ) CALL CHKXER( 'SPPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPTRF( 'U', -1, A, INFO ) CALL CHKXER( 'SPPTRF', INFOT, NOUT, LERR, OK ) * * SPPTRI * SRNAMT = 'SPPTRI' INFOT = 1 CALL SPPTRI( '/', 0, A, INFO ) CALL CHKXER( 'SPPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPTRI( 'U', -1, A, INFO ) CALL CHKXER( 'SPPTRI', INFOT, NOUT, LERR, OK ) * * SPPTRS * SRNAMT = 'SPPTRS' INFOT = 1 CALL SPPTRS( '/', 0, 0, A, B, 1, INFO ) CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPTRS( 'U', -1, 0, A, B, 1, INFO ) CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPPTRS( 'U', 0, -1, A, B, 1, INFO ) CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SPPTRS( 'U', 2, 1, A, B, 1, INFO ) CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK ) * * SPPRFS * SRNAMT = 'SPPRFS' INFOT = 1 CALL SPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK ) * * SPPCON * SRNAMT = 'SPPCON' INFOT = 1 CALL SPPCON( '/', 0, A, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPCON( 'U', -1, A, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPPCON', INFOT, NOUT, LERR, OK ) * * SPPEQU * SRNAMT = 'SPPEQU' INFOT = 1 CALL SPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPPEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPPEQU', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite band matrix. * * SPBTRF * SRNAMT = 'SPBTRF' INFOT = 1 CALL SPBTRF( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBTRF( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBTRF( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPBTRF( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK ) * * SPBTF2 * SRNAMT = 'SPBTF2' INFOT = 1 CALL SPBTF2( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBTF2( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBTF2( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPBTF2( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK ) * * SPBTRS * SRNAMT = 'SPBTRS' INFOT = 1 CALL SPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK ) * * SPBRFS * SRNAMT = 'SPBRFS' INFOT = 1 CALL SPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK ) * * SPBCON * SRNAMT = 'SPBCON' INFOT = 1 CALL SPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK ) * * SPBEQU * SRNAMT = 'SPBEQU' INFOT = 1 CALL SPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of SERRPO * END