*> \brief \b SERRGT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SERRGT( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SERRGT tests the error exits for the REAL tridiagonal *> routines. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SERRGT( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 2 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER INFO REAL ANORM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ), IW( NMAX ) REAL B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ), $ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ), $ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, SGTCON, SGTRFS, SGTTRF, SGTTRS, $ SPTCON, SPTRFS, SPTTRF, SPTTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) D( 1 ) = 1. D( 2 ) = 2. DF( 1 ) = 1. DF( 2 ) = 2. E( 1 ) = 3. E( 2 ) = 4. EF( 1 ) = 3. EF( 2 ) = 4. ANORM = 1.0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * Test error exits for the general tridiagonal routines. * * SGTTRF * SRNAMT = 'SGTTRF' INFOT = 1 CALL SGTTRF( -1, C, D, E, F, IP, INFO ) CALL CHKXER( 'SGTTRF', INFOT, NOUT, LERR, OK ) * * SGTTRS * SRNAMT = 'SGTTRS' INFOT = 1 CALL SGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK ) * * SGTRFS * SRNAMT = 'SGTRFS' INFOT = 1 CALL SGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, $ 1, R1, R2, W, IW, INFO ) CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X, $ 1, R1, R2, W, IW, INFO ) CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL SGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK ) * * SGTCON * SRNAMT = 'SGTCON' INFOT = 1 CALL SGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * Test error exits for the positive definite tridiagonal * routines. * * SPTTRF * SRNAMT = 'SPTTRF' INFOT = 1 CALL SPTTRF( -1, D, E, INFO ) CALL CHKXER( 'SPTTRF', INFOT, NOUT, LERR, OK ) * * SPTTRS * SRNAMT = 'SPTTRS' INFOT = 1 CALL SPTTRS( -1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPTTRS( 0, -1, D, E, X, 1, INFO ) CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SPTTRS( 2, 1, D, E, X, 1, INFO ) CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK ) * * SPTRFS * SRNAMT = 'SPTRFS' INFOT = 1 CALL SPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO ) CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK ) * * SPTCON * SRNAMT = 'SPTCON' INFOT = 1 CALL SPTCON( -1, D, E, ANORM, RCOND, W, INFO ) CALL CHKXER( 'SPTCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SPTCON( 0, D, E, -ANORM, RCOND, W, INFO ) CALL CHKXER( 'SPTCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of SERRGT * END