*> \brief \b DPOT06 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition * ========== * * SUBROUTINE DPOT06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, * RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDB, LDX, N, NRHS * DOUBLE PRECISION RESID * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ), * $ X( LDX, * ) * .. * * Purpose * ======= * *>\details \b Purpose: *>\verbatim *> *> DPOT06 computes the residual for a solution of a system of linear *> equations A*x = b : *> RESID = norm(B - A*X,inf) / ( norm(A,inf) * norm(X,inf) * EPS ), *> where EPS is the machine epsilon. *> *>\endverbatim * * Arguments * ========= * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B, the matrix of right hand sides. *> NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The original M x N matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. If TRANS = 'N', *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,NRHS) *> On entry, the right hand side vectors for the system of *> linear equations. *> On exit, B is overwritten with the difference B - A*X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. IF TRANS = 'N', *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> The maximum over the number of right hand sides of *> norm(B - A*X) / ( norm(A) * norm(X) * EPS ). *> \endverbatim *> * * Authors * ======= * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DPOT06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, $ RWORK, RESID ) * * -- LAPACK test routine (version 3.1.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDB, LDX, N, NRHS DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ), $ X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, NEGONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) PARAMETER ( NEGONE = -1.0D+0 ) * .. * .. Local Scalars .. INTEGER IFAIL, J DOUBLE PRECISION ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DLAMCH, DLANSY EXTERNAL IDAMAX, DLAMCH, DLANSY * .. * .. External Subroutines .. EXTERNAL DSYMM * .. * .. Intrinsic Functions .. INTRINSIC MAX, ABS * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0 * IF( N.LE.0 .OR. NRHS.EQ.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANSY( 'I', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute B - A*X and store in B. IFAIL=0 * CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, $ LDX, ONE, B, LDB ) * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . * RESID = ZERO DO 10 J = 1, NRHS BNORM = ABS(B(IDAMAX( N, B( 1, J ), 1 ),J)) XNORM = ABS(X(IDAMAX( N, X( 1, J ), 1 ),J)) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 10 CONTINUE * RETURN * * End of DPOT06 * END