*> \brief \b DERRPO * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DERRPO( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DERRPO tests the error exits for the DOUBLE PRECISION routines *> for symmetric positive definite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DERRPO( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J DOUBLE PRECISION ANRM, RCOND * .. * .. Local Arrays .. INTEGER IW( NMAX ) DOUBLE PRECISION A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ R1( NMAX ), R2( NMAX ), W( 3*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, DPBCON, DPBEQU, DPBRFS, DPBTF2, $ DPBTRF, DPBTRS, DPOCON, DPOEQU, DPORFS, DPOTF2, $ DPOTRF, DPOTRI, DPOTRS, DPPCON, DPPEQU, DPPRFS, $ DPPTRF, DPPTRI, DPPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = 1.D0 / DBLE( I+J ) AF( I, J ) = 1.D0 / DBLE( I+J ) 10 CONTINUE B( J ) = 0.D0 R1( J ) = 0.D0 R2( J ) = 0.D0 W( J ) = 0.D0 X( J ) = 0.D0 IW( J ) = J 20 CONTINUE OK = .TRUE. * IF( LSAMEN( 2, C2, 'PO' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite matrix. * * DPOTRF * SRNAMT = 'DPOTRF' INFOT = 1 CALL DPOTRF( '/', 0, A, 1, INFO ) CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPOTRF( 'U', -1, A, 1, INFO ) CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPOTRF( 'U', 2, A, 1, INFO ) CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK ) * * DPOTF2 * SRNAMT = 'DPOTF2' INFOT = 1 CALL DPOTF2( '/', 0, A, 1, INFO ) CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPOTF2( 'U', -1, A, 1, INFO ) CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPOTF2( 'U', 2, A, 1, INFO ) CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK ) * * DPOTRI * SRNAMT = 'DPOTRI' INFOT = 1 CALL DPOTRI( '/', 0, A, 1, INFO ) CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPOTRI( 'U', -1, A, 1, INFO ) CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPOTRI( 'U', 2, A, 1, INFO ) CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK ) * * DPOTRS * SRNAMT = 'DPOTRS' INFOT = 1 CALL DPOTRS( '/', 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPOTRS( 'U', -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPOTRS( 'U', 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPOTRS( 'U', 2, 1, A, 1, B, 2, INFO ) CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DPOTRS( 'U', 2, 1, A, 2, B, 1, INFO ) CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK ) * * DPORFS * SRNAMT = 'DPORFS' INFOT = 1 CALL DPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK ) * * DPOCON * SRNAMT = 'DPOCON' INFOT = 1 CALL DPOCON( '/', 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPOCON( 'U', -1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPOCON( 'U', 2, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK ) * * DPOEQU * SRNAMT = 'DPOEQU' INFOT = 1 CALL DPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPOEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPOEQU', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite packed matrix. * * DPPTRF * SRNAMT = 'DPPTRF' INFOT = 1 CALL DPPTRF( '/', 0, A, INFO ) CALL CHKXER( 'DPPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPTRF( 'U', -1, A, INFO ) CALL CHKXER( 'DPPTRF', INFOT, NOUT, LERR, OK ) * * DPPTRI * SRNAMT = 'DPPTRI' INFOT = 1 CALL DPPTRI( '/', 0, A, INFO ) CALL CHKXER( 'DPPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPTRI( 'U', -1, A, INFO ) CALL CHKXER( 'DPPTRI', INFOT, NOUT, LERR, OK ) * * DPPTRS * SRNAMT = 'DPPTRS' INFOT = 1 CALL DPPTRS( '/', 0, 0, A, B, 1, INFO ) CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPTRS( 'U', -1, 0, A, B, 1, INFO ) CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPPTRS( 'U', 0, -1, A, B, 1, INFO ) CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DPPTRS( 'U', 2, 1, A, B, 1, INFO ) CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK ) * * DPPRFS * SRNAMT = 'DPPRFS' INFOT = 1 CALL DPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, IW, $ INFO ) CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK ) * * DPPCON * SRNAMT = 'DPPCON' INFOT = 1 CALL DPPCON( '/', 0, A, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPCON( 'U', -1, A, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPPCON', INFOT, NOUT, LERR, OK ) * * DPPEQU * SRNAMT = 'DPPEQU' INFOT = 1 CALL DPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPPEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPPEQU', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive definite band matrix. * * DPBTRF * SRNAMT = 'DPBTRF' INFOT = 1 CALL DPBTRF( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBTRF( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBTRF( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPBTRF( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK ) * * DPBTF2 * SRNAMT = 'DPBTF2' INFOT = 1 CALL DPBTF2( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBTF2( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBTF2( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPBTF2( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK ) * * DPBTRS * SRNAMT = 'DPBTRS' INFOT = 1 CALL DPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK ) * * DPBRFS * SRNAMT = 'DPBRFS' INFOT = 1 CALL DPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W, $ IW, INFO ) CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK ) * * DPBCON * SRNAMT = 'DPBCON' INFOT = 1 CALL DPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, IW, INFO ) CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK ) * * DPBEQU * SRNAMT = 'DPBEQU' INFOT = 1 CALL DPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of DERRPO * END