*> \brief \b CGTT05 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX, * XACT, LDXACT, FERR, BERR, RESLTS ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER LDB, LDX, LDXACT, N, NRHS * .. * .. Array Arguments .. * REAL BERR( * ), FERR( * ), RESLTS( * ) * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), * $ X( LDX, * ), XACT( LDXACT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGTT05 tests the error bounds from iterative refinement for the *> computed solution to a system of equations A*X = B, where A is a *> general tridiagonal matrix of order n and op(A) = A or A**T, *> depending on TRANS. *> *> RESLTS(1) = test of the error bound *> = norm(X - XACT) / ( norm(X) * FERR ) *> *> A large value is returned if this ratio is not less than one. *> *> RESLTS(2) = residual from the iterative refinement routine *> = the maximum of BERR / ( NZ*EPS + (*) ), where *> (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) *> and NZ = max. number of nonzeros in any row of A, plus 1 *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the form of the system of equations. *> = 'N': A * X = B (No transpose) *> = 'T': A**T * X = B (Transpose) *> = 'C': A**H * X = B (Conjugate transpose = Transpose) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows of the matrices X and XACT. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of the matrices X and XACT. NRHS >= 0. *> \endverbatim *> *> \param[in] DL *> \verbatim *> DL is COMPLEX array, dimension (N-1) *> The (n-1) sub-diagonal elements of A. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is COMPLEX array, dimension (N) *> The diagonal elements of A. *> \endverbatim *> *> \param[in] DU *> \verbatim *> DU is COMPLEX array, dimension (N-1) *> The (n-1) super-diagonal elements of A. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> The right hand side vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> The computed solution vectors. Each vector is stored as a *> column of the matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[in] XACT *> \verbatim *> XACT is COMPLEX array, dimension (LDX,NRHS) *> The exact solution vectors. Each vector is stored as a *> column of the matrix XACT. *> \endverbatim *> *> \param[in] LDXACT *> \verbatim *> LDXACT is INTEGER *> The leading dimension of the array XACT. LDXACT >= max(1,N). *> \endverbatim *> *> \param[in] FERR *> \verbatim *> FERR is REAL array, dimension (NRHS) *> The estimated forward error bounds for each solution vector *> X. If XTRUE is the true solution, FERR bounds the magnitude *> of the largest entry in (X - XTRUE) divided by the magnitude *> of the largest entry in X. *> \endverbatim *> *> \param[in] BERR *> \verbatim *> BERR is REAL array, dimension (NRHS) *> The componentwise relative backward error of each solution *> vector (i.e., the smallest relative change in any entry of A *> or B that makes X an exact solution). *> \endverbatim *> *> \param[out] RESLTS *> \verbatim *> RESLTS is REAL array, dimension (2) *> The maximum over the NRHS solution vectors of the ratios: *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) *> RESLTS(2) = BERR / ( NZ*EPS + (*) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX, $ XACT, LDXACT, FERR, BERR, RESLTS ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDB, LDX, LDXACT, N, NRHS * .. * .. Array Arguments .. REAL BERR( * ), FERR( * ), RESLTS( * ) COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), $ X( LDX, * ), XACT( LDXACT, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOTRAN INTEGER I, IMAX, J, K, NZ REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM COMPLEX ZDUM * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SLAMCH EXTERNAL LSAME, ICAMAX, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, MIN, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0. * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESLTS( 1 ) = ZERO RESLTS( 2 ) = ZERO RETURN END IF * EPS = SLAMCH( 'Epsilon' ) UNFL = SLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL NOTRAN = LSAME( TRANS, 'N' ) NZ = 4 * * Test 1: Compute the maximum of * norm(X - XACT) / ( norm(X) * FERR ) * over all the vectors X and XACT using the infinity-norm. * ERRBND = ZERO DO 30 J = 1, NRHS IMAX = ICAMAX( N, X( 1, J ), 1 ) XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL ) DIFF = ZERO DO 10 I = 1, N DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) ) 10 CONTINUE * IF( XNORM.GT.ONE ) THEN GO TO 20 ELSE IF( DIFF.LE.OVFL*XNORM ) THEN GO TO 20 ELSE ERRBND = ONE / EPS GO TO 30 END IF * 20 CONTINUE IF( DIFF / XNORM.LE.FERR( J ) ) THEN ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) ) ELSE ERRBND = ONE / EPS END IF 30 CONTINUE RESLTS( 1 ) = ERRBND * * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where * (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) * DO 60 K = 1, NRHS IF( NOTRAN ) THEN IF( N.EQ.1 ) THEN AXBI = CABS1( B( 1, K ) ) + $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) ELSE AXBI = CABS1( B( 1, K ) ) + $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) + $ CABS1( DU( 1 ) )*CABS1( X( 2, K ) ) DO 40 I = 2, N - 1 TMP = CABS1( B( I, K ) ) + $ CABS1( DL( I-1 ) )*CABS1( X( I-1, K ) ) + $ CABS1( D( I ) )*CABS1( X( I, K ) ) + $ CABS1( DU( I ) )*CABS1( X( I+1, K ) ) AXBI = MIN( AXBI, TMP ) 40 CONTINUE TMP = CABS1( B( N, K ) ) + CABS1( DL( N-1 ) )* $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )* $ CABS1( X( N, K ) ) AXBI = MIN( AXBI, TMP ) END IF ELSE IF( N.EQ.1 ) THEN AXBI = CABS1( B( 1, K ) ) + $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) ELSE AXBI = CABS1( B( 1, K ) ) + $ CABS1( D( 1 ) )*CABS1( X( 1, K ) ) + $ CABS1( DL( 1 ) )*CABS1( X( 2, K ) ) DO 50 I = 2, N - 1 TMP = CABS1( B( I, K ) ) + $ CABS1( DU( I-1 ) )*CABS1( X( I-1, K ) ) + $ CABS1( D( I ) )*CABS1( X( I, K ) ) + $ CABS1( DL( I ) )*CABS1( X( I+1, K ) ) AXBI = MIN( AXBI, TMP ) 50 CONTINUE TMP = CABS1( B( N, K ) ) + CABS1( DU( N-1 ) )* $ CABS1( X( N-1, K ) ) + CABS1( D( N ) )* $ CABS1( X( N, K ) ) AXBI = MIN( AXBI, TMP ) END IF END IF TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) ) IF( K.EQ.1 ) THEN RESLTS( 2 ) = TMP ELSE RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP ) END IF 60 CONTINUE * RETURN * * End of CGTT05 * END