*> \brief \b CERRPO * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRPO( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRPO tests the error exits for the COMPLEX routines *> for Hermitian positive definite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRPO( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J REAL ANRM, RCOND * .. * .. Local Arrays .. REAL R( NMAX ), R1( NMAX ), R2( NMAX ) COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, CPBCON, CPBEQU, CPBRFS, CPBTF2, $ CPBTRF, CPBTRS, CPOCON, CPOEQU, CPORFS, CPOTF2, $ CPOTRF, CPOTRI, CPOTRS, CPPCON, CPPEQU, CPPRFS, $ CPPTRF, CPPTRI, CPPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 10 CONTINUE B( J ) = 0. R1( J ) = 0. R2( J ) = 0. W( J ) = 0. X( J ) = 0. 20 CONTINUE ANRM = 1. OK = .TRUE. * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite matrix. * IF( LSAMEN( 2, C2, 'PO' ) ) THEN * * CPOTRF * SRNAMT = 'CPOTRF' INFOT = 1 CALL CPOTRF( '/', 0, A, 1, INFO ) CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPOTRF( 'U', -1, A, 1, INFO ) CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPOTRF( 'U', 2, A, 1, INFO ) CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK ) * * CPOTF2 * SRNAMT = 'CPOTF2' INFOT = 1 CALL CPOTF2( '/', 0, A, 1, INFO ) CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPOTF2( 'U', -1, A, 1, INFO ) CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPOTF2( 'U', 2, A, 1, INFO ) CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK ) * * CPOTRI * SRNAMT = 'CPOTRI' INFOT = 1 CALL CPOTRI( '/', 0, A, 1, INFO ) CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPOTRI( 'U', -1, A, 1, INFO ) CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPOTRI( 'U', 2, A, 1, INFO ) CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK ) * * CPOTRS * SRNAMT = 'CPOTRS' INFOT = 1 CALL CPOTRS( '/', 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPOTRS( 'U', -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPOTRS( 'U', 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPOTRS( 'U', 2, 1, A, 1, B, 2, INFO ) CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CPOTRS( 'U', 2, 1, A, 2, B, 1, INFO ) CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK ) * * CPORFS * SRNAMT = 'CPORFS' INFOT = 1 CALL CPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK ) * * CPOCON * SRNAMT = 'CPOCON' INFOT = 1 CALL CPOCON( '/', 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPOCON( 'U', -1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPOCON( 'U', 2, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPOCON( 'U', 1, A, 1, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK ) * * CPOEQU * SRNAMT = 'CPOEQU' INFOT = 1 CALL CPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPOEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPOEQU', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite packed matrix. * ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN * * CPPTRF * SRNAMT = 'CPPTRF' INFOT = 1 CALL CPPTRF( '/', 0, A, INFO ) CALL CHKXER( 'CPPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPTRF( 'U', -1, A, INFO ) CALL CHKXER( 'CPPTRF', INFOT, NOUT, LERR, OK ) * * CPPTRI * SRNAMT = 'CPPTRI' INFOT = 1 CALL CPPTRI( '/', 0, A, INFO ) CALL CHKXER( 'CPPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPTRI( 'U', -1, A, INFO ) CALL CHKXER( 'CPPTRI', INFOT, NOUT, LERR, OK ) * * CPPTRS * SRNAMT = 'CPPTRS' INFOT = 1 CALL CPPTRS( '/', 0, 0, A, B, 1, INFO ) CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPTRS( 'U', -1, 0, A, B, 1, INFO ) CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPPTRS( 'U', 0, -1, A, B, 1, INFO ) CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CPPTRS( 'U', 2, 1, A, B, 1, INFO ) CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK ) * * CPPRFS * SRNAMT = 'CPPRFS' INFOT = 1 CALL CPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, R, INFO ) CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, R, INFO ) CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, R, INFO ) CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK ) * * CPPCON * SRNAMT = 'CPPCON' INFOT = 1 CALL CPPCON( '/', 0, A, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPCON( 'U', -1, A, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPPCON( 'U', 1, A, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK ) * * CPPEQU * SRNAMT = 'CPPEQU' INFOT = 1 CALL CPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPPEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPPEQU', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite band matrix. * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * CPBTRF * SRNAMT = 'CPBTRF' INFOT = 1 CALL CPBTRF( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBTRF( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBTRF( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPBTRF( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK ) * * CPBTF2 * SRNAMT = 'CPBTF2' INFOT = 1 CALL CPBTF2( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBTF2( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBTF2( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPBTF2( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK ) * * CPBTRS * SRNAMT = 'CPBTRS' INFOT = 1 CALL CPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK ) * * CPBRFS * SRNAMT = 'CPBRFS' INFOT = 1 CALL CPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK ) * * CPBCON * SRNAMT = 'CPBCON' INFOT = 1 CALL CPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CPBCON( 'U', 1, 0, A, 1, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK ) * * CPBEQU * SRNAMT = 'CPBEQU' INFOT = 1 CALL CPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRPO * END