*> \brief \b CCHKHE_AA * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CCHKHE_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, * XACT, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NN, NNB, NNS, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) * REAL RWORK( * ) * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCHKHE_AA tests CHETRF_AA, -TRS_AA. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NBVAL) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX)) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2016 * * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CCHKHE_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, $ X, XACT, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2016 * IMPLICIT NONE * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNB, NNS, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) REAL RWORK( * ) COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX CZERO PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) INTEGER NTYPES PARAMETER ( NTYPES = 10 ) INTEGER NTESTS PARAMETER ( NTESTS = 9 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, TYPE, UPLO, XTYPE CHARACTER*3 PATH, MATPATH INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS, $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE, $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT REAL ANORM, CNDNUM * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL DGET06, CLANHE EXTERNAL DGET06, CLANHE * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, CERRHE, CGET04, $ ZHECON, CHERFS, CHET01_AA, CHETRF_AA, ZHETRI2, $ CHETRS_AA, CLACPY, CLAIPD, CLARHS, CLATB4, $ CLATMS, CPOT02, ZPOT03, ZPOT05 * .. * .. Intrinsic Functions .. INTRINSIC REAL, IMAG, MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * * * Test path * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'HA' * * Path to generate matrices * MATPATH( 1: 1 ) = 'Complex precision' MATPATH( 2: 3 ) = 'HE' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL CERRHE( PATH, NOUT ) INFOT = 0 * * Set the minimum block size for which the block routine should * be used, which will be later returned by ILAENV * CALL XLAENV( 2, 2 ) * * Do for each value of N in NVAL * DO 180 IN = 1, NN N = NVAL( IN ) IF( N .GT. NMAX ) THEN NFAIL = NFAIL + 1 WRITE(NOUT, 9995) 'M ', N, NMAX GO TO 180 END IF LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * IZERO = 0 DO 170 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 170 * * Skip types 3, 4, 5, or 6 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 170 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 160 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Set up parameters with CLATB4 for the matrix generator * based on the type of matrix to be generated. * CALL CLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, $ ANORM, MODE, CNDNUM, DIST ) * * Generate a matrix with CLATMS. * SRNAMT = 'CLATMS' CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, $ INFO ) * * Check error code from CLATMS and handle error. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) * * Skip all tests for this generated matrix * GO TO 160 END IF * * For types 3-6, zero one or more rows and columns of * the matrix to test that INFO is returned correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * IF( IMAT.LT.6 ) THEN * * Set row and column IZERO to zero. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*LDA DO 20 I = 1, IZERO - 1 A( IOFF+I ) = CZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = CZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = CZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = CZERO 50 CONTINUE END IF ELSE IF( IUPLO.EQ.1 ) THEN * * Set the first IZERO rows and columns to zero. * IOFF = 0 DO 70 J = 1, N I2 = MIN( J, IZERO ) DO 60 I = 1, I2 A( IOFF+I ) = CZERO 60 CONTINUE IOFF = IOFF + LDA 70 CONTINUE IZERO = 1 ELSE * * Set the last IZERO rows and columns to zero. * IOFF = 0 DO 90 J = 1, N I1 = MAX( J, IZERO ) DO 80 I = I1, N A( IOFF+I ) = CZERO 80 CONTINUE IOFF = IOFF + LDA 90 CONTINUE END IF END IF ELSE IZERO = 0 END IF * * End generate test matrix A. * * * Set the imaginary part of the diagonals. * CALL CLAIPD( N, A, LDA+1, 0 ) * * Do for each value of NB in NBVAL * DO 150 INB = 1, NNB * * Set the optimal blocksize, which will be later * returned by ILAENV. * NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Copy the test matrix A into matrix AFAC which * will be factorized in place. This is needed to * preserve the test matrix A for subsequent tests. * CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) * * Compute the L*D*L**T or U*D*U**T factorization of the * matrix. IWORK stores details of the interchanges and * the block structure of D. AINV is a work array for * block factorization, LWORK is the length of AINV. * LWORK = MAX( 1, ( NB+1 )*LDA ) SRNAMT = 'CHETRF_AA' CALL CHETRF_AA( UPLO, N, AFAC, LDA, IWORK, AINV, $ LWORK, INFO ) * * Adjust the expected value of INFO to account for * pivoting. * IF( IZERO.GT.0 ) THEN J = 1 K = IZERO 100 CONTINUE IF( J.EQ.K ) THEN K = IWORK( J ) ELSE IF( IWORK( J ).EQ.K ) THEN K = J END IF IF( J.LT.K ) THEN J = J + 1 GO TO 100 END IF ELSE K = 0 END IF * * Check error code from CHETRF and handle error. * IF( INFO.NE.K ) THEN CALL ALAERH( PATH, 'CHETRF_AA', INFO, K, UPLO, $ N, N, -1, -1, NB, IMAT, NFAIL, NERRS, $ NOUT ) END IF * *+ TEST 1 * Reconstruct matrix from factors and compute residual. * CALL CHET01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK, $ AINV, LDA, RWORK, RESULT( 1 ) ) NT = 1 * * * Print information about the tests that did not pass * the threshold. * DO 110 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 110 CONTINUE NRUN = NRUN + NT * * Skip solver test if INFO is not 0. * IF( INFO.NE.0 ) THEN GO TO 140 END IF * * Do for each value of NRHS in NSVAL. * DO 130 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * *+ TEST 2 (Using TRS) * Solve and compute residual for A * X = B. * * Choose a set of NRHS random solution vectors * stored in XACT and set up the right hand side B * SRNAMT = 'CLARHS' CALL CLARHS( MATPATH, XTYPE, UPLO, ' ', N, N, $ KL, KU, NRHS, A, LDA, XACT, LDA, $ B, LDA, ISEED, INFO ) CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'CHETRS_AA' LWORK = MAX( 1, 3*N-2 ) CALL CHETRS_AA( UPLO, N, NRHS, AFAC, LDA, IWORK, $ X, LDA, WORK, LWORK, INFO ) * * Check error code from CHETRS and handle error. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'CHETRS_AA', INFO, 0, $ UPLO, N, N, -1, -1, NRHS, IMAT, $ NFAIL, NERRS, NOUT ) END IF * CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) * * Compute the residual for the solution * CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 2 ) ) * * Print information about the tests that did not pass * the threshold. * DO 120 K = 2, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, $ IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 120 CONTINUE NRUN = NRUN + 1 * * End do for each value of NRHS in NSVAL. * 130 CONTINUE 140 CONTINUE 150 CONTINUE 160 CONTINUE 170 CONTINUE 180 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ', $ I2, ', test(', I2, ') =', G12.5 ) 9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=', $ I6 ) RETURN * * End of CCHKHE_AA * END