*> \brief \b CCHKAA * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * PROGRAM CCHKAA * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCHKAA is the main test program for the COMPLEX linear equation *> routines. *> *> The program must be driven by a short data file. The first 15 records *> (not including the first comment line) specify problem dimensions *> and program options using list-directed input. The remaining lines *> specify the LAPACK test paths and the number of matrix types to use *> in testing. An annotated example of a data file can be obtained by *> deleting the first 3 characters from the following 42 lines: *> Data file for testing COMPLEX LAPACK linear equation routines *> 7 Number of values of M *> 0 1 2 3 5 10 16 Values of M (row dimension) *> 7 Number of values of N *> 0 1 2 3 5 10 16 Values of N (column dimension) *> 1 Number of values of NRHS *> 2 Values of NRHS (number of right hand sides) *> 5 Number of values of NB *> 1 3 3 3 20 Values of NB (the blocksize) *> 1 0 5 9 1 Values of NX (crossover point) *> 3 Number of values of RANK *> 30 50 90 Values of rank (as a % of N) *> 30.0 Threshold value of test ratio *> T Put T to test the LAPACK routines *> T Put T to test the driver routines *> T Put T to test the error exits *> CGE 11 List types on next line if 0 < NTYPES < 11 *> CGB 8 List types on next line if 0 < NTYPES < 8 *> CGT 12 List types on next line if 0 < NTYPES < 12 *> CPO 9 List types on next line if 0 < NTYPES < 9 *> CPO 9 List types on next line if 0 < NTYPES < 9 *> CPP 9 List types on next line if 0 < NTYPES < 9 *> CPB 8 List types on next line if 0 < NTYPES < 8 *> CPT 12 List types on next line if 0 < NTYPES < 12 *> CHE 10 List types on next line if 0 < NTYPES < 10 *> CHR 10 List types on next line if 0 < NTYPES < 10 *> CHK 10 List types on next line if 0 < NTYPES < 10 *> CHA 10 List types on next line if 0 < NTYPES < 10 *> CHP 10 List types on next line if 0 < NTYPES < 10 *> CSY 11 List types on next line if 0 < NTYPES < 11 *> CSK 11 List types on next line if 0 < NTYPES < 11 *> CSR 11 List types on next line if 0 < NTYPES < 11 *> CSP 11 List types on next line if 0 < NTYPES < 11 *> CTR 18 List types on next line if 0 < NTYPES < 18 *> CTP 18 List types on next line if 0 < NTYPES < 18 *> CTB 17 List types on next line if 0 < NTYPES < 17 *> CQR 8 List types on next line if 0 < NTYPES < 8 *> CRQ 8 List types on next line if 0 < NTYPES < 8 *> CLQ 8 List types on next line if 0 < NTYPES < 8 *> CQL 8 List types on next line if 0 < NTYPES < 8 *> CQP 6 List types on next line if 0 < NTYPES < 6 *> CTZ 3 List types on next line if 0 < NTYPES < 3 *> CLS 6 List types on next line if 0 < NTYPES < 6 *> CEQ *> CQT *> CQX *> \endverbatim * * Parameters: * ========== * *> \verbatim *> NMAX INTEGER *> The maximum allowable value for M and N. *> *> MAXIN INTEGER *> The number of different values that can be used for each of *> M, N, NRHS, NB, NX and RANK *> *> MAXRHS INTEGER *> The maximum number of right hand sides *> *> MATMAX INTEGER *> The maximum number of matrix types to use for testing *> *> NIN INTEGER *> The unit number for input *> *> NOUT INTEGER *> The unit number for output *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date December 2016 * *> \ingroup complex_lin * * ===================================================================== PROGRAM CCHKAA * * -- LAPACK test routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 132 ) INTEGER MAXIN PARAMETER ( MAXIN = 12 ) INTEGER MAXRHS PARAMETER ( MAXRHS = 16 ) INTEGER MATMAX PARAMETER ( MATMAX = 30 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER KDMAX PARAMETER ( KDMAX = NMAX+( NMAX+1 ) / 4 ) * .. * .. Local Scalars .. LOGICAL FATAL, TSTCHK, TSTDRV, TSTERR CHARACTER C1 CHARACTER*2 C2 CHARACTER*3 PATH CHARACTER*10 INTSTR CHARACTER*72 ALINE INTEGER I, IC, J, K, LA, LAFAC, LDA, NB, NM, NMATS, NN, $ NNB, NNB2, NNS, NRHS, NTYPES, NRANK, $ VERS_MAJOR, VERS_MINOR, VERS_PATCH REAL EPS, S1, S2, THREQ, THRESH * .. * .. Local Arrays .. LOGICAL DOTYPE( MATMAX ) INTEGER IWORK( 25*NMAX ), MVAL( MAXIN ), $ NBVAL( MAXIN ), NBVAL2( MAXIN ), $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), $ RANKVAL( MAXIN ), PIV( NMAX ) REAL RWORK( 150*NMAX+2*MAXRHS ), S( 2*NMAX ) COMPLEX A( ( KDMAX+1 )*NMAX, 7 ), B( NMAX*MAXRHS, 4 ), $ E( NMAX ), WORK( NMAX, NMAX+MAXRHS+10 ) * .. * .. External Functions .. LOGICAL LSAME, LSAMEN REAL SECOND, SLAMCH EXTERNAL LSAME, LSAMEN, SECOND, SLAMCH * .. * .. External Subroutines .. EXTERNAL ALAREQ, CCHKEQ, CCHKGB, CCHKGE, CCHKGT, CCHKHE, $ CCHKHE_ROOK, CCHKHE_RK, CCHKHE_AA, CCHKLQ, $ CCHKPB,CCHKPO, CCHKPS, CCHKPP, CCHKPT, CCHKQ3, $ CCHKQL, CCHKQR, CCHKRQ, CCHKSP, CCHKSY, $ CCHKSY_ROOK, CCHKSY_RK, CCHKSY_AA, CCHKTB, $ CCHKTP, CCHKTR, CCHKTZ, CDRVGB, CDRVGE, CDRVGT, $ CDRVHE, CDRVHE_ROOK, CDRVHE_RK, CDRVHE_AA, $ CDRVHP, CDRVLS, CDRVPB, CDRVPO, CDRVPP, CDRVPT, $ CDRVSP, CDRVSY, CDRVSY_ROOK, CDRVSY_RK, $ CDRVSY_AA, ILAVER, CCHKQRT, CCHKQRTP * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Arrays in Common .. INTEGER IPARMS( 100 ) * .. * .. Common blocks .. COMMON / CLAENV / IPARMS COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA THREQ / 2.0 / , INTSTR / '0123456789' / * .. * .. Executable Statements .. * S1 = SECOND( ) LDA = NMAX FATAL = .FALSE. * * Read a dummy line. * READ( NIN, FMT = * ) * * Report values of parameters. * CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) WRITE( NOUT, FMT = 9994 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH * * Read the values of M * READ( NIN, FMT = * )NM IF( NM.LT.1 ) THEN WRITE( NOUT, FMT = 9996 )' NM ', NM, 1 NM = 0 FATAL = .TRUE. ELSE IF( NM.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9995 )' NM ', NM, MAXIN NM = 0 FATAL = .TRUE. END IF READ( NIN, FMT = * )( MVAL( I ), I = 1, NM ) DO 10 I = 1, NM IF( MVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )' M ', MVAL( I ), 0 FATAL = .TRUE. ELSE IF( MVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9995 )' M ', MVAL( I ), NMAX FATAL = .TRUE. END IF 10 CONTINUE IF( NM.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'M ', ( MVAL( I ), I = 1, NM ) * * Read the values of N * READ( NIN, FMT = * )NN IF( NN.LT.1 ) THEN WRITE( NOUT, FMT = 9996 )' NN ', NN, 1 NN = 0 FATAL = .TRUE. ELSE IF( NN.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9995 )' NN ', NN, MAXIN NN = 0 FATAL = .TRUE. END IF READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) DO 20 I = 1, NN IF( NVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )' N ', NVAL( I ), 0 FATAL = .TRUE. ELSE IF( NVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9995 )' N ', NVAL( I ), NMAX FATAL = .TRUE. END IF 20 CONTINUE IF( NN.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'N ', ( NVAL( I ), I = 1, NN ) * * Read the values of NRHS * READ( NIN, FMT = * )NNS IF( NNS.LT.1 ) THEN WRITE( NOUT, FMT = 9996 )' NNS', NNS, 1 NNS = 0 FATAL = .TRUE. ELSE IF( NNS.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9995 )' NNS', NNS, MAXIN NNS = 0 FATAL = .TRUE. END IF READ( NIN, FMT = * )( NSVAL( I ), I = 1, NNS ) DO 30 I = 1, NNS IF( NSVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )'NRHS', NSVAL( I ), 0 FATAL = .TRUE. ELSE IF( NSVAL( I ).GT.MAXRHS ) THEN WRITE( NOUT, FMT = 9995 )'NRHS', NSVAL( I ), MAXRHS FATAL = .TRUE. END IF 30 CONTINUE IF( NNS.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'NRHS', ( NSVAL( I ), I = 1, NNS ) * * Read the values of NB * READ( NIN, FMT = * )NNB IF( NNB.LT.1 ) THEN WRITE( NOUT, FMT = 9996 )'NNB ', NNB, 1 NNB = 0 FATAL = .TRUE. ELSE IF( NNB.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9995 )'NNB ', NNB, MAXIN NNB = 0 FATAL = .TRUE. END IF READ( NIN, FMT = * )( NBVAL( I ), I = 1, NNB ) DO 40 I = 1, NNB IF( NBVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )' NB ', NBVAL( I ), 0 FATAL = .TRUE. END IF 40 CONTINUE IF( NNB.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'NB ', ( NBVAL( I ), I = 1, NNB ) * * Set NBVAL2 to be the set of unique values of NB * NNB2 = 0 DO 60 I = 1, NNB NB = NBVAL( I ) DO 50 J = 1, NNB2 IF( NB.EQ.NBVAL2( J ) ) $ GO TO 60 50 CONTINUE NNB2 = NNB2 + 1 NBVAL2( NNB2 ) = NB 60 CONTINUE * * Read the values of NX * READ( NIN, FMT = * )( NXVAL( I ), I = 1, NNB ) DO 70 I = 1, NNB IF( NXVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )' NX ', NXVAL( I ), 0 FATAL = .TRUE. END IF 70 CONTINUE IF( NNB.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'NX ', ( NXVAL( I ), I = 1, NNB ) * * Read the values of RANKVAL * READ( NIN, FMT = * )NRANK IF( NN.LT.1 ) THEN WRITE( NOUT, FMT = 9996 )' NRANK ', NRANK, 1 NRANK = 0 FATAL = .TRUE. ELSE IF( NN.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9995 )' NRANK ', NRANK, MAXIN NRANK = 0 FATAL = .TRUE. END IF READ( NIN, FMT = * )( RANKVAL( I ), I = 1, NRANK ) DO I = 1, NRANK IF( RANKVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9996 )' RANK ', RANKVAL( I ), 0 FATAL = .TRUE. ELSE IF( RANKVAL( I ).GT.100 ) THEN WRITE( NOUT, FMT = 9995 )' RANK ', RANKVAL( I ), 100 FATAL = .TRUE. END IF END DO IF( NRANK.GT.0 ) $ WRITE( NOUT, FMT = 9993 )'RANK % OF N', $ ( RANKVAL( I ), I = 1, NRANK ) * * Read the threshold value for the test ratios. * READ( NIN, FMT = * )THRESH WRITE( NOUT, FMT = 9992 )THRESH * * Read the flag that indicates whether to test the LAPACK routines. * READ( NIN, FMT = * )TSTCHK * * Read the flag that indicates whether to test the driver routines. * READ( NIN, FMT = * )TSTDRV * * Read the flag that indicates whether to test the error exits. * READ( NIN, FMT = * )TSTERR * IF( FATAL ) THEN WRITE( NOUT, FMT = 9999 ) STOP END IF * * Calculate and print the machine dependent constants. * EPS = SLAMCH( 'Underflow threshold' ) WRITE( NOUT, FMT = 9991 )'underflow', EPS EPS = SLAMCH( 'Overflow threshold' ) WRITE( NOUT, FMT = 9991 )'overflow ', EPS EPS = SLAMCH( 'Epsilon' ) WRITE( NOUT, FMT = 9991 )'precision', EPS WRITE( NOUT, FMT = * ) NRHS = NSVAL( 1 ) * 80 CONTINUE * * Read a test path and the number of matrix types to use. * READ( NIN, FMT = '(A72)', END = 140 )ALINE PATH = ALINE( 1: 3 ) NMATS = MATMAX I = 3 90 CONTINUE I = I + 1 IF( I.GT.72 ) $ GO TO 130 IF( ALINE( I: I ).EQ.' ' ) $ GO TO 90 NMATS = 0 100 CONTINUE C1 = ALINE( I: I ) DO 110 K = 1, 10 IF( C1.EQ.INTSTR( K: K ) ) THEN IC = K - 1 GO TO 120 END IF 110 CONTINUE GO TO 130 120 CONTINUE NMATS = NMATS*10 + IC I = I + 1 IF( I.GT.72 ) $ GO TO 130 GO TO 100 130 CONTINUE C1 = PATH( 1: 1 ) C2 = PATH( 2: 3 ) * * Check first character for correct precision. * IF( .NOT.LSAME( C1, 'Complex precision' ) ) THEN WRITE( NOUT, FMT = 9990 )PATH * ELSE IF( NMATS.LE.0 ) THEN * * Check for a positive number of tests requested. * WRITE( NOUT, FMT = 9989 )PATH * ELSE IF( LSAMEN( 2, C2, 'GE' ) ) THEN * * GE: general matrices * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKGE( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS, $ NSVAL, THRESH, TSTERR, LDA, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN * * GB: general banded matrices * LA = ( 2*KDMAX+1 )*NMAX LAFAC = ( 3*KDMAX+1 )*NMAX NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS, $ NSVAL, THRESH, TSTERR, A( 1, 1 ), LA, $ A( 1, 3 ), LAFAC, B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ A( 1, 1 ), LA, A( 1, 3 ), LAFAC, A( 1, 6 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * GT: general tridiagonal matrices * NTYPES = 12 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'PO' ) ) THEN * * PO: positive definite matrices * NTYPES = 9 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKPO( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK, $ RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'PS' ) ) THEN * * PS: positive semi-definite matrices * NTYPES = 9 * CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKPS( DOTYPE, NN, NVAL, NNB2, NBVAL2, NRANK, $ RANKVAL, THRESH, TSTERR, LDA, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), PIV, WORK, RWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN * * PP: positive definite packed matrices * NTYPES = 9 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKPP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK, $ RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * PB: positive definite banded matrices * NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKPB( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK, $ RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * PT: positive definite tridiagonal matrices * NTYPES = 12 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ A( 1, 1 ), S, A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ A( 1, 1 ), S, A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'HE' ) ) THEN * * HE: Hermitian indefinite matrices, * with partial (Bunch-Kaufman) pivoting algorithm * NTYPES = 10 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKHE( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN * * HR: Hermitian indefinite matrices, * with bounded Bunch-Kaufman (rook) pivoting algorithm * NTYPES = 10 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKHE_ROOK(DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVHE_ROOK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'HK' ) ) THEN * * HK: Hermitian indefinite matrices, * with bounded Bunch-Kaufman (rook) pivoting algorithm, * differnet matrix storage format than HR path version. * NTYPES = 10 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKHE_RK( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ E, A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVHE_RK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), E, A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'HA' ) ) THEN * * HA: Hermitian matrices, * Aasen Algorithm * NTYPES = 10 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKHE_AA( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, $ NSVAL, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVHE_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN * * HP: Hermitian indefinite packed matrices, * with partial (Bunch-Kaufman) pivoting algorithm * NTYPES = 10 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKHP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK, $ IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'SY' ) ) THEN * * SY: symmetric indefinite matrices, * with partial (Bunch-Kaufman) pivoting algorithm * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKSY( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN * * SR: symmetric indefinite matrices, * with bounded Bunch-Kaufman (rook) pivoting algorithm * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKSY_ROOK(DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVSY_ROOK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN * * SK: symmetric indefinite matrices, * with bounded Bunch-Kaufman (rook) pivoting algorithm, * differnet matrix storage format than SR path version. * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKSY_RK( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ E, A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVSY_RK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), E, A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN * * SA: symmetric indefinite matrices with Aasen's algorithm, * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKSY_AA( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), $ B( 1, 3 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVSY_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, $ RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN * * SP: symmetric indefinite packed matrices, * with partial (Bunch-Kaufman) pivoting algorithm * NTYPES = 11 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKSP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK, $ IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * IF( TSTDRV ) THEN CALL CDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9988 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN * * TR: triangular matrices * NTYPES = 18 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKTR( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL, $ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK, $ NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN * * TP: triangular packed matrices * NTYPES = 18 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKTP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN * * TB: triangular banded matrices * NTYPES = 17 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKTB( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), $ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'QR' ) ) THEN * * QR: QR factorization * NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'LQ' ) ) THEN * * LQ: LQ factorization * NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), $ WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'QL' ) ) THEN * * QL: QL factorization * NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKQL( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), $ WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'RQ' ) ) THEN * * RQ: RQ factorization * NTYPES = 8 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKRQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), $ WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'EQ' ) ) THEN * * EQ: Equilibration routines for general and positive definite * matrices (THREQ should be between 2 and 10) * IF( TSTCHK ) THEN CALL CCHKEQ( THREQ, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TZ' ) ) THEN * * TZ: Trapezoidal matrix * NTYPES = 3 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, $ A( 1, 1 ), A( 1, 2 ), S( 1 ), $ B( 1, 1 ), WORK, RWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'QP' ) ) THEN * * QP: QR factorization with pivoting * NTYPES = 6 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTCHK ) THEN CALL CCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ THRESH, A( 1, 1 ), A( 1, 2 ), S( 1 ), $ B( 1, 1 ), WORK, RWORK, IWORK, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'LS' ) ) THEN * * LS: Least squares drivers * NTYPES = 6 CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) * IF( TSTDRV ) THEN CALL CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ NBVAL, NXVAL, THRESH, TSTERR, A( 1, 1 ), $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ S( 1 ), S( NMAX+1 ), NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'QT' ) ) THEN * * QT: QRT routines for general matrices * IF( TSTCHK ) THEN CALL CCHKQRT( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, $ NBVAL, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'QX' ) ) THEN * * QX: QRT routines for triangular-pentagonal matrices * IF( TSTCHK ) THEN CALL CCHKQRTP( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, $ NBVAL, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TQ' ) ) THEN * * TQ: LQT routines for general matrices * IF( TSTCHK ) THEN CALL CCHKLQT( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, $ NBVAL, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'XQ' ) ) THEN * * XQ: LQT routines for triangular-pentagonal matrices * IF( TSTCHK ) THEN CALL CCHKLQTP( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, $ NBVAL, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE IF( LSAMEN( 2, C2, 'TS' ) ) THEN * * TS: QR routines for tall-skinny matrices * IF( TSTCHK ) THEN CALL CCHKTSQR( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, $ NBVAL, NOUT ) ELSE WRITE( NOUT, FMT = 9989 )PATH END IF * ELSE * WRITE( NOUT, FMT = 9990 )PATH END IF * * Go back to get another input line. * GO TO 80 * * Branch to this line when the last record is read. * 140 CONTINUE CLOSE ( NIN ) S2 = SECOND( ) WRITE( NOUT, FMT = 9998 ) WRITE( NOUT, FMT = 9997 )S2 - S1 * 9999 FORMAT( / ' Execution not attempted due to input errors' ) 9998 FORMAT( / ' End of tests' ) 9997 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) 9996 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be >=', $ I6 ) 9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=', $ I6 ) 9994 FORMAT( ' Tests of the COMPLEX LAPACK routines ', $ / ' LAPACK VERSION ', I1, '.', I1, '.', I1, $ / / ' The following parameter values will be used:' ) 9993 FORMAT( 4X, A4, ': ', 10I6, / 11X, 10I6 ) 9992 FORMAT( / ' Routines pass computational tests if test ratio is ', $ 'less than', F8.2, / ) 9991 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) 9990 FORMAT( / 1X, A3, ': Unrecognized path name' ) 9989 FORMAT( / 1X, A3, ' routines were not tested' ) 9988 FORMAT( / 1X, A3, ' driver routines were not tested' ) * * End of CCHKAA * END