*> \brief \b ALAHD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ALAHD( IOUNIT, PATH ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER IOUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ALAHD prints header information for the different test paths. *> \endverbatim * * Arguments: * ========== * *> \param[in] IOUNIT *> \verbatim *> IOUNIT is INTEGER *> The unit number to which the header information should be *> printed. *> \endverbatim *> *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The name of the path for which the header information is to *> be printed. Current paths are *> _GE: General matrices *> _GB: General band *> _GT: General Tridiagonal *> _PO: Symmetric or Hermitian positive definite *> _PS: Symmetric or Hermitian positive semi-definite *> _PP: Symmetric or Hermitian positive definite packed *> _PB: Symmetric or Hermitian positive definite band *> _PT: Symmetric or Hermitian positive definite tridiagonal *> _SY: Symmetric indefinite, *> with partial (Bunch-Kaufman) pivoting *> _SR: Symmetric indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> _SK: Symmetric indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> ( new storage format for factors: *> L and diagonal of D is stored in A, *> subdiagonal of D is stored in E ) *> _SP: Symmetric indefinite packed, *> with partial (Bunch-Kaufman) pivoting *> _HA: (complex) Hermitian , *> with Aasen Algorithm *> _HE: (complex) Hermitian indefinite, *> with partial (Bunch-Kaufman) pivoting *> _HR: (complex) Hermitian indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> _HK: (complex) Hermitian indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> ( new storage format for factors: *> L and diagonal of D is stored in A, *> subdiagonal of D is stored in E ) *> _HP: (complex) Hermitian indefinite packed, *> with partial (Bunch-Kaufman) pivoting *> _TR: Triangular *> _TP: Triangular packed *> _TB: Triangular band *> _QR: QR (general matrices) *> _LQ: LQ (general matrices) *> _QL: QL (general matrices) *> _RQ: RQ (general matrices) *> _QP: QR with column pivoting *> _TZ: Trapezoidal *> _LS: Least Squares driver routines *> _LU: LU variants *> _CH: Cholesky variants *> _QS: QR variants *> _QT: QRT (general matrices) *> _QX: QRT (triangular-pentagonal matrices) *> The first character must be one of S, D, C, or Z (C or Z only *> if complex). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date December 2016 * *> \ingroup aux_lin * * ===================================================================== SUBROUTINE ALAHD( IOUNIT, PATH ) * * -- LAPACK test routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER IOUNIT * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER C1, C3 CHARACTER*2 P2 CHARACTER*4 EIGCNM CHARACTER*32 SUBNAM CHARACTER*9 SYM * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Intrinsic Functions .. INTRINSIC LEN_TRIM * .. * .. Executable Statements .. * IF( IOUNIT.LE.0 ) $ RETURN C1 = PATH( 1: 1 ) C3 = PATH( 3: 3 ) P2 = PATH( 2: 3 ) SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' ) IF( .NOT.( SORD .OR. CORZ ) ) $ RETURN * IF( LSAMEN( 2, P2, 'GE' ) ) THEN * * GE: General dense * WRITE( IOUNIT, FMT = 9999 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9979 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9962 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9959 )4 WRITE( IOUNIT, FMT = 9958 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9956 )7 WRITE( IOUNIT, FMT = 9955 )8 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'GB' ) ) THEN * * GB: General band * WRITE( IOUNIT, FMT = 9998 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9978 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9962 )1 WRITE( IOUNIT, FMT = 9960 )2 WRITE( IOUNIT, FMT = 9959 )3 WRITE( IOUNIT, FMT = 9958 )4 WRITE( IOUNIT, FMT = 9957 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'GT' ) ) THEN * * GT: General tridiagonal * WRITE( IOUNIT, FMT = 9997 )PATH WRITE( IOUNIT, FMT = 9977 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9962 )1 WRITE( IOUNIT, FMT = 9960 )2 WRITE( IOUNIT, FMT = 9959 )3 WRITE( IOUNIT, FMT = 9958 )4 WRITE( IOUNIT, FMT = 9957 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PO' ) .OR. LSAMEN( 2, P2, 'PP' ) ) THEN * * PO: Positive definite full * PP: Positive definite packed * IF( SORD ) THEN SYM = 'Symmetric' ELSE SYM = 'Hermitian' END IF IF( LSAME( C3, 'O' ) ) THEN WRITE( IOUNIT, FMT = 9996 )PATH, SYM ELSE WRITE( IOUNIT, FMT = 9995 )PATH, SYM END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9975 )PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9954 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9959 )4 WRITE( IOUNIT, FMT = 9958 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9956 )7 WRITE( IOUNIT, FMT = 9955 )8 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PS' ) ) THEN * * PS: Positive semi-definite full * IF( SORD ) THEN SYM = 'Symmetric' ELSE SYM = 'Hermitian' END IF IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'C' ) ) THEN EIGCNM = '1E04' ELSE EIGCNM = '1D12' END IF WRITE( IOUNIT, FMT = 9995 )PATH, SYM WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 8973 )EIGCNM, EIGCNM, EIGCNM WRITE( IOUNIT, FMT = '( '' Difference:'' )' ) WRITE( IOUNIT, FMT = 8972 )C1 WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' ) WRITE( IOUNIT, FMT = 8950 ) WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) ELSE IF( LSAMEN( 2, P2, 'PB' ) ) THEN * * PB: Positive definite band * IF( SORD ) THEN WRITE( IOUNIT, FMT = 9994 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9994 )PATH, 'Hermitian' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9973 )PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9954 )1 WRITE( IOUNIT, FMT = 9960 )2 WRITE( IOUNIT, FMT = 9959 )3 WRITE( IOUNIT, FMT = 9958 )4 WRITE( IOUNIT, FMT = 9957 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PT' ) ) THEN * * PT: Positive definite tridiagonal * IF( SORD ) THEN WRITE( IOUNIT, FMT = 9993 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9993 )PATH, 'Hermitian' END IF WRITE( IOUNIT, FMT = 9976 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9952 )1 WRITE( IOUNIT, FMT = 9960 )2 WRITE( IOUNIT, FMT = 9959 )3 WRITE( IOUNIT, FMT = 9958 )4 WRITE( IOUNIT, FMT = 9957 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'SY' ) ) THEN * * SY: Symmetric indefinite full, * with partial (Bunch-Kaufman) pivoting algorithm * IF( LSAME( C3, 'Y' ) ) THEN WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9991 )PATH, 'Symmetric' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) IF( SORD ) THEN WRITE( IOUNIT, FMT = 9972 ) ELSE WRITE( IOUNIT, FMT = 9971 ) END IF WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9960 )4 WRITE( IOUNIT, FMT = 9959 )5 WRITE( IOUNIT, FMT = 9958 )6 WRITE( IOUNIT, FMT = 9956 )7 WRITE( IOUNIT, FMT = 9957 )8 WRITE( IOUNIT, FMT = 9955 )9 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'SR' ) .OR. LSAMEN( 2, P2, 'SK') ) THEN * * SR: Symmetric indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm * * SK: Symmetric indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm, * ( new storage format for factors: * L and diagonal of D is stored in A, * subdiagonal of D is stored in E ) * WRITE( IOUNIT, FMT = 9892 )PATH, 'Symmetric' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) IF( SORD ) THEN WRITE( IOUNIT, FMT = 9972 ) ELSE WRITE( IOUNIT, FMT = 9971 ) END IF * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9927 )3 WRITE( IOUNIT, FMT = 9928 ) WRITE( IOUNIT, FMT = 9926 )4 WRITE( IOUNIT, FMT = 9928 ) WRITE( IOUNIT, FMT = 9960 )5 WRITE( IOUNIT, FMT = 9959 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'SP' ) ) THEN * * SP: Symmetric indefinite packed, * with partial (Bunch-Kaufman) pivoting algorithm * IF( LSAME( C3, 'Y' ) ) THEN WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9991 )PATH, 'Symmetric' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) IF( SORD ) THEN WRITE( IOUNIT, FMT = 9972 ) ELSE WRITE( IOUNIT, FMT = 9971 ) END IF WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9959 )4 WRITE( IOUNIT, FMT = 9958 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9957 )7 WRITE( IOUNIT, FMT = 9955 )8 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HA' ) ) THEN * * HA: Hermitian, * with Assen Algorithm * WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9972 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9960 )4 WRITE( IOUNIT, FMT = 9959 )5 WRITE( IOUNIT, FMT = 9958 )6 WRITE( IOUNIT, FMT = 9956 )7 WRITE( IOUNIT, FMT = 9957 )8 WRITE( IOUNIT, FMT = 9955 )9 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HE' ) ) THEN * * HE: Hermitian indefinite full, * with partial (Bunch-Kaufman) pivoting algorithm * WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9972 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9960 )4 WRITE( IOUNIT, FMT = 9959 )5 WRITE( IOUNIT, FMT = 9958 )6 WRITE( IOUNIT, FMT = 9956 )7 WRITE( IOUNIT, FMT = 9957 )8 WRITE( IOUNIT, FMT = 9955 )9 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HR' ) .OR. LSAMEN( 2, P2, 'HR' ) ) THEN * * HR: Hermitian indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm * * HK: Hermitian indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm, * ( new storage format for factors: * L and diagonal of D is stored in A, * subdiagonal of D is stored in E ) * WRITE( IOUNIT, FMT = 9892 )PATH, 'Hermitian' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9972 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9927 )3 WRITE( IOUNIT, FMT = 9928 ) WRITE( IOUNIT, FMT = 9926 )4 WRITE( IOUNIT, FMT = 9928 ) WRITE( IOUNIT, FMT = 9960 )5 WRITE( IOUNIT, FMT = 9959 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HP' ) ) THEN * * HP: Hermitian indefinite packed, * with partial (Bunch-Kaufman) pivoting algorithm * IF( LSAME( C3, 'E' ) ) THEN WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian' ELSE WRITE( IOUNIT, FMT = 9991 )PATH, 'Hermitian' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9972 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9953 )1 WRITE( IOUNIT, FMT = 9961 )2 WRITE( IOUNIT, FMT = 9960 )3 WRITE( IOUNIT, FMT = 9959 )4 WRITE( IOUNIT, FMT = 9958 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9957 )7 WRITE( IOUNIT, FMT = 9955 )8 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'TR' ) .OR. LSAMEN( 2, P2, 'TP' ) ) THEN * * TR: Triangular full * TP: Triangular packed * IF( LSAME( C3, 'R' ) ) THEN WRITE( IOUNIT, FMT = 9990 )PATH SUBNAM = PATH( 1: 1 ) // 'LATRS' ELSE WRITE( IOUNIT, FMT = 9989 )PATH SUBNAM = PATH( 1: 1 ) // 'LATPS' END IF WRITE( IOUNIT, FMT = 9966 )PATH WRITE( IOUNIT, FMT = 9965 )SUBNAM(1:LEN_TRIM( SUBNAM )) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9961 )1 WRITE( IOUNIT, FMT = 9960 )2 WRITE( IOUNIT, FMT = 9959 )3 WRITE( IOUNIT, FMT = 9958 )4 WRITE( IOUNIT, FMT = 9957 )5 WRITE( IOUNIT, FMT = 9956 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = 9951 )SUBNAM(1:LEN_TRIM( SUBNAM )), 8 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'TB' ) ) THEN * * TB: Triangular band * WRITE( IOUNIT, FMT = 9988 )PATH SUBNAM = PATH( 1: 1 ) // 'LATBS' WRITE( IOUNIT, FMT = 9964 )PATH WRITE( IOUNIT, FMT = 9963 )SUBNAM(1:LEN_TRIM( SUBNAM )) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9960 )1 WRITE( IOUNIT, FMT = 9959 )2 WRITE( IOUNIT, FMT = 9958 )3 WRITE( IOUNIT, FMT = 9957 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9955 )6 WRITE( IOUNIT, FMT = 9951 )SUBNAM(1:LEN_TRIM( SUBNAM )), 7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'QR' ) ) THEN * * QR decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9987 )PATH, 'QR' WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9970 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 6950 )8 WRITE( IOUNIT, FMT = 9946 )2 WRITE( IOUNIT, FMT = 9944 )3, 'M' WRITE( IOUNIT, FMT = 9943 )4, 'M' WRITE( IOUNIT, FMT = 9942 )5, 'M' WRITE( IOUNIT, FMT = 9941 )6, 'M' WRITE( IOUNIT, FMT = 9960 )7 WRITE( IOUNIT, FMT = 6660 )9 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'LQ' ) ) THEN * * LQ decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9987 )PATH, 'LQ' WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9970 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9949 )1 WRITE( IOUNIT, FMT = 9945 )2 WRITE( IOUNIT, FMT = 9944 )3, 'N' WRITE( IOUNIT, FMT = 9943 )4, 'N' WRITE( IOUNIT, FMT = 9942 )5, 'N' WRITE( IOUNIT, FMT = 9941 )6, 'N' WRITE( IOUNIT, FMT = 9960 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'QL' ) ) THEN * * QL decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9987 )PATH, 'QL' WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9970 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9948 )1 WRITE( IOUNIT, FMT = 9946 )2 WRITE( IOUNIT, FMT = 9944 )3, 'M' WRITE( IOUNIT, FMT = 9943 )4, 'M' WRITE( IOUNIT, FMT = 9942 )5, 'M' WRITE( IOUNIT, FMT = 9941 )6, 'M' WRITE( IOUNIT, FMT = 9960 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'RQ' ) ) THEN * * RQ decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9987 )PATH, 'RQ' WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9970 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9947 )1 WRITE( IOUNIT, FMT = 9945 )2 WRITE( IOUNIT, FMT = 9944 )3, 'N' WRITE( IOUNIT, FMT = 9943 )4, 'N' WRITE( IOUNIT, FMT = 9942 )5, 'N' WRITE( IOUNIT, FMT = 9941 )6, 'N' WRITE( IOUNIT, FMT = 9960 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'QP' ) ) THEN * * QR decomposition with column pivoting * WRITE( IOUNIT, FMT = 9986 )PATH WRITE( IOUNIT, FMT = 9969 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9940 )1 WRITE( IOUNIT, FMT = 9939 )2 WRITE( IOUNIT, FMT = 9938 )3 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'TZ' ) ) THEN * * TZ: Trapezoidal * WRITE( IOUNIT, FMT = 9985 )PATH WRITE( IOUNIT, FMT = 9968 ) WRITE( IOUNIT, FMT = 9929 )C1 WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9940 )1 WRITE( IOUNIT, FMT = 9937 )2 WRITE( IOUNIT, FMT = 9938 )3 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'LS' ) ) THEN * * LS: Least Squares driver routines for * LS, LSD, LSS, LSX and LSY. * WRITE( IOUNIT, FMT = 9984 )PATH WRITE( IOUNIT, FMT = 9967 ) WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1 WRITE( IOUNIT, FMT = 9935 )1 WRITE( IOUNIT, FMT = 9931 )2 WRITE( IOUNIT, FMT = 9933 )3 WRITE( IOUNIT, FMT = 9935 )4 WRITE( IOUNIT, FMT = 9934 )5 WRITE( IOUNIT, FMT = 9932 )6 WRITE( IOUNIT, FMT = 9920 ) WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'LU' ) ) THEN * * LU factorization variants * WRITE( IOUNIT, FMT = 9983 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9979 ) WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' ) WRITE( IOUNIT, FMT = 9962 )1 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'CH' ) ) THEN * * Cholesky factorization variants * WRITE( IOUNIT, FMT = 9982 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9974 ) WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' ) WRITE( IOUNIT, FMT = 9954 )1 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'QS' ) ) THEN * * QR factorization variants * WRITE( IOUNIT, FMT = 9981 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9970 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'QT' ) ) THEN * * QRT (general matrices) * WRITE( IOUNIT, FMT = 8000 ) PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 8011 ) 1 WRITE( IOUNIT, FMT = 8012 ) 2 WRITE( IOUNIT, FMT = 8013 ) 3 WRITE( IOUNIT, FMT = 8014 ) 4 WRITE( IOUNIT, FMT = 8015 ) 5 WRITE( IOUNIT, FMT = 8016 ) 6 * ELSE IF( LSAMEN( 2, P2, 'QX' ) ) THEN * * QRT (triangular-pentagonal) * WRITE( IOUNIT, FMT = 8001 ) PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 8017 ) 1 WRITE( IOUNIT, FMT = 8018 ) 2 WRITE( IOUNIT, FMT = 8019 ) 3 WRITE( IOUNIT, FMT = 8020 ) 4 WRITE( IOUNIT, FMT = 8021 ) 5 WRITE( IOUNIT, FMT = 8022 ) 6 * ELSE IF( LSAMEN( 2, P2, 'TQ' ) ) THEN * * QRT (triangular-pentagonal) * WRITE( IOUNIT, FMT = 8002 ) PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 8023 ) 1 WRITE( IOUNIT, FMT = 8024 ) 2 WRITE( IOUNIT, FMT = 8025 ) 3 WRITE( IOUNIT, FMT = 8026 ) 4 WRITE( IOUNIT, FMT = 8027 ) 5 WRITE( IOUNIT, FMT = 8028 ) 6 * ELSE IF( LSAMEN( 2, P2, 'XQ' ) ) THEN * * QRT (triangular-pentagonal) * WRITE( IOUNIT, FMT = 8003 ) PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 8029 ) 1 WRITE( IOUNIT, FMT = 8030 ) 2 WRITE( IOUNIT, FMT = 8031 ) 3 WRITE( IOUNIT, FMT = 8032 ) 4 WRITE( IOUNIT, FMT = 8033 ) 5 WRITE( IOUNIT, FMT = 8034 ) 6 * ELSE IF( LSAMEN( 2, P2, 'TS' ) ) THEN * * QRT (triangular-pentagonal) * WRITE( IOUNIT, FMT = 8004 ) PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 8035 ) 1 WRITE( IOUNIT, FMT = 8036 ) 2 WRITE( IOUNIT, FMT = 8037 ) 3 WRITE( IOUNIT, FMT = 8038 ) 4 WRITE( IOUNIT, FMT = 8039 ) 5 WRITE( IOUNIT, FMT = 8040 ) 6 * ELSE * * Print error message if no header is available. * WRITE( IOUNIT, FMT = 9980 )PATH END IF * * First line of header * 9999 FORMAT( / 1X, A3, ': General dense matrices' ) 9998 FORMAT( / 1X, A3, ': General band matrices' ) 9997 FORMAT( / 1X, A3, ': General tridiagonal' ) 9996 FORMAT( / 1X, A3, ': ', A9, ' positive definite matrices' ) 9995 FORMAT( / 1X, A3, ': ', A9, ' positive definite packed matrices' $ ) 9994 FORMAT( / 1X, A3, ': ', A9, ' positive definite band matrices' ) 9993 FORMAT( / 1X, A3, ': ', A9, ' positive definite tridiagonal' ) 9992 FORMAT( / 1X, A3, ': ', A9, ' indefinite matrices', $ ', partial (Bunch-Kaufman) pivoting' ) 9991 FORMAT( / 1X, A3, ': ', A9, ' indefinite packed matrices', $ ', partial (Bunch-Kaufman) pivoting' ) 9892 FORMAT( / 1X, A3, ': ', A9, ' indefinite matrices', $ ', "rook" (bounded Bunch-Kaufman) pivoting' ) 9891 FORMAT( / 1X, A3, ': ', A9, ' indefinite packed matrices', $ ', "rook" (bounded Bunch-Kaufman) pivoting' ) 9990 FORMAT( / 1X, A3, ': Triangular matrices' ) 9989 FORMAT( / 1X, A3, ': Triangular packed matrices' ) 9988 FORMAT( / 1X, A3, ': Triangular band matrices' ) 9987 FORMAT( / 1X, A3, ': ', A2, ' factorization of general matrices' $ ) 9986 FORMAT( / 1X, A3, ': QR factorization with column pivoting' ) 9985 FORMAT( / 1X, A3, ': RQ factorization of trapezoidal matrix' ) 9984 FORMAT( / 1X, A3, ': Least squares driver routines' ) 9983 FORMAT( / 1X, A3, ': LU factorization variants' ) 9982 FORMAT( / 1X, A3, ': Cholesky factorization variants' ) 9981 FORMAT( / 1X, A3, ': QR factorization variants' ) 9980 FORMAT( / 1X, A3, ': No header available' ) 8000 FORMAT( / 1X, A3, ': QRT factorization for general matrices' ) 8001 FORMAT( / 1X, A3, ': QRT factorization for ', $ 'triangular-pentagonal matrices' ) 8002 FORMAT( / 1X, A3, ': LQT factorization for general matrices' ) 8003 FORMAT( / 1X, A3, ': LQT factorization for ', $ 'triangular-pentagonal matrices' ) 8004 FORMAT( / 1X, A3, ': TS factorization for ', $ 'tall-skiny or short-wide matrices' ) * * GE matrix types * 9979 FORMAT( 4X, '1. Diagonal', 24X, '7. Last n/2 columns zero', / 4X, $ '2. Upper triangular', 16X, $ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '3. Lower triangular', 16X, '9. Random, CNDNUM = 0.1/EPS', $ / 4X, '4. Random, CNDNUM = 2', 13X, $ '10. Scaled near underflow', / 4X, '5. First column zero', $ 14X, '11. Scaled near overflow', / 4X, $ '6. Last column zero' ) * * GB matrix types * 9978 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X, $ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. First column zero', 15X, '6. Random, CNDNUM = .01/EPS', $ / 4X, '3. Last column zero', 16X, $ '7. Scaled near underflow', / 4X, $ '4. Last n/2 columns zero', 11X, '8. Scaled near overflow' ) * * GT matrix types * 9977 FORMAT( ' Matrix types (1-6 have specified condition numbers):', $ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM', $ / 4X, '2. Random, CNDNUM = 2', 14X, '8. First column zero', $ / 4X, '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X, $ '9. Last column zero', / 4X, '4. Random, CNDNUM = 0.1/EPS', $ 7X, '10. Last n/2 columns zero', / 4X, $ '5. Scaled near underflow', 10X, $ '11. Scaled near underflow', / 4X, $ '6. Scaled near overflow', 11X, '12. Scaled near overflow' ) * * PT matrix types * 9976 FORMAT( ' Matrix types (1-6 have specified condition numbers):', $ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM', $ / 4X, '2. Random, CNDNUM = 2', 14X, $ '8. First row and column zero', / 4X, $ '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X, $ '9. Last row and column zero', / 4X, $ '4. Random, CNDNUM = 0.1/EPS', 7X, $ '10. Middle row and column zero', / 4X, $ '5. Scaled near underflow', 10X, $ '11. Scaled near underflow', / 4X, $ '6. Scaled near overflow', 11X, '12. Scaled near overflow' ) * * PO, PP matrix types * 9975 FORMAT( 4X, '1. Diagonal', 24X, $ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Random, CNDNUM = 2', 14X, '7. Random, CNDNUM = 0.1/EPS', $ / 3X, '*3. First row and column zero', 7X, $ '8. Scaled near underflow', / 3X, $ '*4. Last row and column zero', 8X, $ '9. Scaled near overflow', / 3X, $ '*5. Middle row and column zero', / 3X, $ '(* - tests error exits from ', A3, $ 'TRF, no test ratios are computed)' ) * * CH matrix types * 9974 FORMAT( 4X, '1. Diagonal', 24X, $ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Random, CNDNUM = 2', 14X, '7. Random, CNDNUM = 0.1/EPS', $ / 3X, '*3. First row and column zero', 7X, $ '8. Scaled near underflow', / 3X, $ '*4. Last row and column zero', 8X, $ '9. Scaled near overflow', / 3X, $ '*5. Middle row and column zero', / 3X, $ '(* - tests error exits, no test ratios are computed)' ) * * PS matrix types * 8973 FORMAT( 4X, '1. Diagonal', / 4X, '2. Random, CNDNUM = 2', 14X, $ / 3X, '*3. Nonzero eigenvalues of: D(1:RANK-1)=1 and ', $ 'D(RANK) = 1.0/', A4, / 3X, $ '*4. Nonzero eigenvalues of: D(1)=1 and ', $ ' D(2:RANK) = 1.0/', A4, / 3X, $ '*5. Nonzero eigenvalues of: D(I) = ', A4, $ '**(-(I-1)/(RANK-1)) ', ' I=1:RANK', / 4X, $ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '7. Random, CNDNUM = 0.1/EPS', / 4X, $ '8. Scaled near underflow', / 4X, '9. Scaled near overflow', $ / 3X, '(* - Semi-definite tests )' ) 8972 FORMAT( 3X, 'RANK minus computed rank, returned by ', A, 'PSTRF' ) * * PB matrix types * 9973 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X, $ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 3X, $ '*2. First row and column zero', 7X, $ '6. Random, CNDNUM = 0.1/EPS', / 3X, $ '*3. Last row and column zero', 8X, $ '7. Scaled near underflow', / 3X, $ '*4. Middle row and column zero', 6X, $ '8. Scaled near overflow', / 3X, $ '(* - tests error exits from ', A3, $ 'TRF, no test ratios are computed)' ) * * SSY, SSR, SSP, CHE, CHR, CHP matrix types * 9972 FORMAT( 4X, '1. Diagonal', 24X, $ '6. Last n/2 rows and columns zero', / 4X, $ '2. Random, CNDNUM = 2', 14X, $ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '3. First row and column zero', 7X, $ '8. Random, CNDNUM = 0.1/EPS', / 4X, $ '4. Last row and column zero', 8X, $ '9. Scaled near underflow', / 4X, $ '5. Middle row and column zero', 5X, $ '10. Scaled near overflow' ) * * CSY, CSR, CSP matrix types * 9971 FORMAT( 4X, '1. Diagonal', 24X, $ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Random, CNDNUM = 2', 14X, '8. Random, CNDNUM = 0.1/EPS', $ / 4X, '3. First row and column zero', 7X, $ '9. Scaled near underflow', / 4X, $ '4. Last row and column zero', 7X, $ '10. Scaled near overflow', / 4X, $ '5. Middle row and column zero', 5X, $ '11. Block diagonal matrix', / 4X, $ '6. Last n/2 rows and columns zero' ) * * QR matrix types * 9970 FORMAT( 4X, '1. Diagonal', 24X, $ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Upper triangular', 16X, '6. Random, CNDNUM = 0.1/EPS', $ / 4X, '3. Lower triangular', 16X, $ '7. Scaled near underflow', / 4X, '4. Random, CNDNUM = 2', $ 14X, '8. Scaled near overflow' ) * * QP matrix types * 9969 FORMAT( ' Matrix types (2-6 have condition 1/EPS):', / 4X, $ '1. Zero matrix', 21X, '4. First n/2 columns fixed', / 4X, $ '2. One small eigenvalue', 12X, '5. Last n/2 columns fixed', $ / 4X, '3. Geometric distribution', 10X, $ '6. Every second column fixed' ) * * TZ matrix types * 9968 FORMAT( ' Matrix types (2-3 have condition 1/EPS):', / 4X, $ '1. Zero matrix', / 4X, '2. One small eigenvalue', / 4X, $ '3. Geometric distribution' ) * * LS matrix types * 9967 FORMAT( ' Matrix types (1-3: full rank, 4-6: rank deficient):', $ / 4X, '1 and 4. Normal scaling', / 4X, $ '2 and 5. Scaled near overflow', / 4X, $ '3 and 6. Scaled near underflow' ) * * TR, TP matrix types * 9966 FORMAT( ' Matrix types for ', A3, ' routines:', / 4X, $ '1. Diagonal', 24X, '6. Scaled near overflow', / 4X, $ '2. Random, CNDNUM = 2', 14X, '7. Identity', / 4X, $ '3. Random, CNDNUM = sqrt(0.1/EPS) ', $ '8. Unit triangular, CNDNUM = 2', / 4X, $ '4. Random, CNDNUM = 0.1/EPS', 8X, $ '9. Unit, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '5. Scaled near underflow', 10X, $ '10. Unit, CNDNUM = 0.1/EPS' ) 9965 FORMAT( ' Special types for testing ', A, ':', / 3X, $ '11. Matrix elements are O(1), large right hand side', / 3X, $ '12. First diagonal causes overflow,', $ ' offdiagonal column norms < 1', / 3X, $ '13. First diagonal causes overflow,', $ ' offdiagonal column norms > 1', / 3X, $ '14. Growth factor underflows, solution does not overflow', $ / 3X, '15. Small diagonal causes gradual overflow', / 3X, $ '16. One zero diagonal element', / 3X, $ '17. Large offdiagonals cause overflow when adding a column' $ , / 3X, '18. Unit triangular with large right hand side' ) * * TB matrix types * 9964 FORMAT( ' Matrix types for ', A3, ' routines:', / 4X, $ '1. Random, CNDNUM = 2', 14X, '6. Identity', / 4X, $ '2. Random, CNDNUM = sqrt(0.1/EPS) ', $ '7. Unit triangular, CNDNUM = 2', / 4X, $ '3. Random, CNDNUM = 0.1/EPS', 8X, $ '8. Unit, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '4. Scaled near underflow', 11X, $ '9. Unit, CNDNUM = 0.1/EPS', / 4X, $ '5. Scaled near overflow' ) 9963 FORMAT( ' Special types for testing ', A, ':', / 3X, $ '10. Matrix elements are O(1), large right hand side', / 3X, $ '11. First diagonal causes overflow,', $ ' offdiagonal column norms < 1', / 3X, $ '12. First diagonal causes overflow,', $ ' offdiagonal column norms > 1', / 3X, $ '13. Growth factor underflows, solution does not overflow', $ / 3X, '14. Small diagonal causes gradual overflow', / 3X, $ '15. One zero diagonal element', / 3X, $ '16. Large offdiagonals cause overflow when adding a column' $ , / 3X, '17. Unit triangular with large right hand side' ) * * Test ratios * 9962 FORMAT( 3X, I2, ': norm( L * U - A ) / ( N * norm(A) * EPS )' ) 9961 FORMAT( 3X, I2, ': norm( I - A*AINV ) / ', $ '( N * norm(A) * norm(AINV) * EPS )' ) 9960 FORMAT( 3X, I2, ': norm( B - A * X ) / ', $ '( norm(A) * norm(X) * EPS )' ) 6660 FORMAT( 3X, I2, ': diagonal is not non-negative') 9959 FORMAT( 3X, I2, ': norm( X - XACT ) / ', $ '( norm(XACT) * CNDNUM * EPS )' ) 9958 FORMAT( 3X, I2, ': norm( X - XACT ) / ', $ '( norm(XACT) * CNDNUM * EPS ), refined' ) 9957 FORMAT( 3X, I2, ': norm( X - XACT ) / ', $ '( norm(XACT) * (error bound) )' ) 9956 FORMAT( 3X, I2, ': (backward error) / EPS' ) 9955 FORMAT( 3X, I2, ': RCOND * CNDNUM - 1.0' ) 9954 FORMAT( 3X, I2, ': norm( U'' * U - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L * L'' - A ) / ( N * norm(A) * EPS )' $ ) 8950 FORMAT( 3X, $ 'norm( P * U'' * U * P'' - A ) / ( N * norm(A) * EPS )', $ ', or', / 3X, $ 'norm( P * L * L'' * P'' - A ) / ( N * norm(A) * EPS )' ) 9953 FORMAT( 3X, I2, ': norm( U*D*U'' - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )' $ ) 9952 FORMAT( 3X, I2, ': norm( U''*D*U - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )' $ ) 9951 FORMAT( ' Test ratio for ', A, ':', / 3X, I2, $ ': norm( s*b - A*x ) / ( norm(A) * norm(x) * EPS )' ) 9950 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( M * norm(A) * EPS )' ) 6950 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( M * norm(A) * EPS ) $ [RFPG]' ) 9949 FORMAT( 3X, I2, ': norm( L - A * Q'' ) / ( N * norm(A) * EPS )' ) 9948 FORMAT( 3X, I2, ': norm( L - Q'' * A ) / ( M * norm(A) * EPS )' ) 9947 FORMAT( 3X, I2, ': norm( R - A * Q'' ) / ( N * norm(A) * EPS )' ) 9946 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( M * EPS )' ) 9945 FORMAT( 3X, I2, ': norm( I - Q*Q'' ) / ( N * EPS )' ) 9944 FORMAT( 3X, I2, ': norm( Q*C - Q*C ) / ', '( ', A1, $ ' * norm(C) * EPS )' ) 9943 FORMAT( 3X, I2, ': norm( C*Q - C*Q ) / ', '( ', A1, $ ' * norm(C) * EPS )' ) 9942 FORMAT( 3X, I2, ': norm( Q''*C - Q''*C )/ ', '( ', A1, $ ' * norm(C) * EPS )' ) 9941 FORMAT( 3X, I2, ': norm( C*Q'' - C*Q'' )/ ', '( ', A1, $ ' * norm(C) * EPS )' ) 9940 FORMAT( 3X, I2, ': norm(svd(A) - svd(R)) / ', $ '( M * norm(svd(R)) * EPS )' ) 9939 FORMAT( 3X, I2, ': norm( A*P - Q*R ) / ( M * norm(A) * EPS )' $ ) 9938 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( M * EPS )' ) 9937 FORMAT( 3X, I2, ': norm( A - R*Q ) / ( M * norm(A) * EPS )' $ ) 9935 FORMAT( 3X, I2, ': norm( B - A * X ) / ', $ '( max(M,N) * norm(A) * norm(X) * EPS )' ) 9934 FORMAT( 3X, I2, ': norm( (A*X-B)'' *A ) / ', $ '( max(M,N,NRHS) * norm(A) * norm(B) * EPS )' ) 9933 FORMAT( 3X, I2, ': norm(svd(A)-svd(R)) / ', $ '( min(M,N) * norm(svd(R)) * EPS )' ) 9932 FORMAT( 3X, I2, ': Check if X is in the row space of A or A''' ) 9931 FORMAT( 3X, I2, ': norm( (A*X-B)'' *A ) / ', $ '( max(M,N,NRHS) * norm(A) * norm(B) * EPS )', / 7X, $ 'if TRANS=''N'' and M.GE.N or TRANS=''T'' and M.LT.N, ', $ 'otherwise', / 7X, $ 'check if X is in the row space of A or A'' ', $ '(overdetermined case)' ) 9929 FORMAT( ' Test ratios (1-3: ', A1, 'TZRZF):' ) 9920 FORMAT( 3X, ' 7-10: same as 3-6', 3X, ' 11-14: same as 3-6' ) 9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-6: ', A1, $ 'GELSY, 7-10: ', A1, 'GELSS, 11-14: ', A1, 'GELSD, 15-16: ' $ A1, 'GETSLS)') 9928 FORMAT( 7X, 'where ALPHA = ( 1 + SQRT( 17 ) ) / 8' ) 9927 FORMAT( 3X, I2, ': ABS( Largest element in L )', / 12X, $ ' - ( 1 / ( 1 - ALPHA ) ) + THRESH' ) 9926 FORMAT( 3X, I2, ': Largest 2-Norm of 2-by-2 pivots', / 12X, $ ' - ( ( 1 + ALPHA ) / ( 1 - ALPHA ) ) + THRESH' ) 8011 FORMAT(3X,I2,': norm( R - Q''*A ) / ( M * norm(A) * EPS )' ) 8012 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( M * EPS )' ) 8013 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( M * norm(C) * EPS )' ) 8014 FORMAT(3X,I2,': norm( Q''*C - Q''*C ) / ( M * norm(C) * EPS )') 8015 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( M * norm(C) * EPS )' ) 8016 FORMAT(3X,I2,': norm( C*Q'' - C*Q'' ) / ( M * norm(C) * EPS )') 8017 FORMAT(3X,I2,': norm( R - Q''*A ) / ( (M+N) * norm(A) * EPS )' ) 8018 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( (M+N) * EPS )' ) 8019 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' ) 8020 FORMAT(3X,I2, $ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )') 8021 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' ) 8022 FORMAT(3X,I2, $ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )') 8023 FORMAT(3X,I2,': norm( L - A*Q'' ) / ( (M+N) * norm(A) * EPS )' ) 8024 FORMAT(3X,I2,': norm( I - Q*Q'' ) / ( (M+N) * EPS )' ) 8025 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' ) 8026 FORMAT(3X,I2, $ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )') 8027 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' ) 8028 FORMAT(3X,I2, $ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )') 8029 FORMAT(3X,I2,': norm( L - A*Q'' ) / ( (M+N) * norm(A) * EPS )' ) 8030 FORMAT(3X,I2,': norm( I - Q*Q'' ) / ( (M+N) * EPS )' ) 8031 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' ) 8032 FORMAT(3X,I2, $ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )') 8033 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' ) 8034 FORMAT(3X,I2, $ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )') 8035 FORMAT(3X,I2,': norm( R - Q''*A ) / ( (M+N) * norm(A) * EPS )' ) 8036 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( (M+N) * EPS )' ) 8037 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' ) 8038 FORMAT(3X,I2, $ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )') 8039 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' ) 8040 FORMAT(3X,I2, $ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )') * RETURN * * End of ALAHD * END