*> \brief \b SGRQTS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER LDA, LDB, LWORK, M, P, N * .. * .. Array Arguments .. * REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ), * $ Q( LDA, * ), * $ B( LDB, * ), BF( LDB, * ), T( LDB, * ), * $ Z( LDB, * ), BWK( LDB, * ), * $ TAUA( * ), TAUB( * ), * $ RESULT( 4 ), RWORK( * ), WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGRQTS tests SGGRQF, which computes the GRQ factorization of an *> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows of the matrix B. P >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> The M-by-N matrix A. *> \endverbatim *> *> \param[out] AF *> \verbatim *> AF is REAL array, dimension (LDA,N) *> Details of the GRQ factorization of A and B, as returned *> by SGGRQF, see SGGRQF for further details. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is REAL array, dimension (LDA,N) *> The N-by-N orthogonal matrix Q. *> \endverbatim *> *> \param[out] R *> \verbatim *> R is REAL array, dimension (LDA,MAX(M,N)) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays A, AF, R and Q. *> LDA >= max(M,N). *> \endverbatim *> *> \param[out] TAUA *> \verbatim *> TAUA is REAL array, dimension (min(M,N)) *> The scalar factors of the elementary reflectors, as returned *> by SGGQRC. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB,N) *> On entry, the P-by-N matrix A. *> \endverbatim *> *> \param[out] BF *> \verbatim *> BF is REAL array, dimension (LDB,N) *> Details of the GQR factorization of A and B, as returned *> by SGGRQF, see SGGRQF for further details. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is REAL array, dimension (LDB,P) *> The P-by-P orthogonal matrix Z. *> \endverbatim *> *> \param[out] T *> \verbatim *> T is REAL array, dimension (LDB,max(P,N)) *> \endverbatim *> *> \param[out] BWK *> \verbatim *> BWK is REAL array, dimension (LDB,N) *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the arrays B, BF, Z and T. *> LDB >= max(P,N). *> \endverbatim *> *> \param[out] TAUB *> \verbatim *> TAUB is REAL array, dimension (min(P,N)) *> The scalar factors of the elementary reflectors, as returned *> by SGGRQF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK, LWORK >= max(M,P,N)**2. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (M) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (4) *> The test ratios: *> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) *> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) *> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, P, N * .. * .. Array Arguments .. REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ), $ Q( LDA, * ), $ B( LDB, * ), BF( LDB, * ), T( LDB, * ), $ Z( LDB, * ), BWK( LDB, * ), $ TAUA( * ), TAUB( * ), $ RESULT( 4 ), RWORK( * ), WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E+10 ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, BNORM, ULP, UNFL, RESID * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SGGRQF, SLACPY, SLASET, SORGQR, $ SORGRQ, SSYRK * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * ULP = SLAMCH( 'Precision' ) UNFL = SLAMCH( 'Safe minimum' ) * * Copy the matrix A to the array AF. * CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA ) CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB ) * ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL ) BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL ) * * Factorize the matrices A and B in the arrays AF and BF. * CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK, $ LWORK, INFO ) * * Generate the N-by-N matrix Q * CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) IF( M.LE.N ) THEN IF( M.GT.0 .AND. M.LT.N ) $ CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA ) IF( M.GT.1 ) $ CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA, $ Q( N-M+2, N-M+1 ), LDA ) ELSE IF( N.GT.1 ) $ CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA, $ Q( 2, 1 ), LDA ) END IF CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO ) * * Generate the P-by-P matrix Z * CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB ) IF( P.GT.1 ) $ CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB ) CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO ) * * Copy R * CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA ) IF( M.LE.N )THEN CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ), $ LDA ) ELSE CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA ) CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ), $ LDA ) END IF * * Copy T * CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB ) CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB ) * * Compute R - A*Q' * CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q, $ LDA, ONE, R, LDA ) * * Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) . * RESID = SLANGE( '1', M, N, R, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP ELSE RESULT( 1 ) = ZERO END IF * * Compute T*Q - Z'*B * CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B, $ LDB, ZERO, BWK, LDB ) CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB, $ Q, LDA, -ONE, BWK, LDB ) * * Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) . * RESID = SLANGE( '1', P, N, BWK, LDB, RWORK ) IF( BNORM.GT.ZERO ) THEN RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP ELSE RESULT( 2 ) = ZERO END IF * * Compute I - Q*Q' * CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA ) CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R, $ LDA ) * * Compute norm( I - Q'*Q ) / ( N * ULP ) . * RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK ) RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP * * Compute I - Z'*Z * CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB ) CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T, $ LDB ) * * Compute norm( I - Z'*Z ) / ( P*ULP ) . * RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK ) RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP * RETURN * * End of SGRQTS * END