*> \brief \b SGET54 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition * ========== * * SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V, * LDV, WORK, RESULT ) * * .. Scalar Arguments .. * INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N * REAL RESULT * .. * .. Array Arguments .. * REAL A( LDA, * ), B( LDB, * ), S( LDS, * ), * $ T( LDT, * ), U( LDU, * ), V( LDV, * ), * $ WORK( * ) * .. * * Purpose * ======= * *>\details \b Purpose: *>\verbatim *> *> SGET54 checks a generalized decomposition of the form *> *> A = U*S*V' and B = U*T* V' *> *> where ' means transpose and U and V are orthogonal. *> *> Specifically, *> *> RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) *> *>\endverbatim * * Arguments * ========= * *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, SGET54 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> The original (unfactored) matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB, N) *> The original (unfactored) matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] S *> \verbatim *> S is REAL array, dimension (LDS, N) *> The factored matrix S. *> \endverbatim *> *> \param[in] LDS *> \verbatim *> LDS is INTEGER *> The leading dimension of S. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] T *> \verbatim *> T is REAL array, dimension (LDT, N) *> The factored matrix T. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of T. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is REAL array, dimension (LDU, N) *> The orthogonal matrix on the left-hand side in the *> decomposition. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N and *> at least 1. *> \endverbatim *> *> \param[in] V *> \verbatim *> V is REAL array, dimension (LDV, N) *> The orthogonal matrix on the left-hand side in the *> decomposition. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of V. LDV must be at least N and *> at least 1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (3*N**2) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL *> The value RESULT, It is currently limited to 1/ulp, to *> avoid overflow. Errors are flagged by RESULT=10/ulp. *> \endverbatim *> * * Authors * ======= * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V, $ LDV, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N REAL RESULT * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), S( LDS, * ), $ T( LDT, * ), U( LDU, * ), V( LDV, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. REAL ABNORM, ULP, UNFL, WNORM * .. * .. Local Arrays .. REAL DUM( 1 ) * .. * .. External Functions .. REAL SLAMCH, SLANGE EXTERNAL SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) * * compute the norm of (A,B) * CALL SLACPY( 'Full', N, N, A, LDA, WORK, N ) CALL SLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N ) ABNORM = MAX( SLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL ) * * Compute W1 = A - U*S*V', and put in the array WORK(1:N*N) * CALL SLACPY( ' ', N, N, A, LDA, WORK, N ) CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO, $ WORK( N*N+1 ), N ) * CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV, $ ONE, WORK, N ) * * Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N) * CALL SLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N ) CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO, $ WORK( 2*N*N+1 ), N ) * CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV, $ ONE, WORK( N*N+1 ), N ) * * Compute norm(W)/ ( ulp*norm((A,B)) ) * WNORM = SLANGE( '1', N, 2*N, WORK, N, DUM ) * IF( ABNORM.GT.WNORM ) THEN RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP ) ELSE IF( ABNORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP ) ELSE RESULT = MIN( WNORM / ABNORM, REAL( 2*N ) ) / ( 2*N*ULP ) END IF END IF * RETURN * * End of SGET54 * END