* =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT, * WORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDU, LDVT, N, NS * REAL RESID * .. * .. Array Arguments .. * REAL D( * ), E( * ), S( * ), U( LDU, * ), * $ VT( LDVT, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SBDT04 reconstructs a bidiagonal matrix B from its (partial) SVD: *> S = U' * B * V *> where U and V are orthogonal matrices and S is diagonal. *> *> The test ratio to test the singular value decomposition is *> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS ) *> where VT = V' and EPS is the machine precision. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix B is upper or lower bidiagonal. *> = 'U': Upper bidiagonal *> = 'L': Lower bidiagonal *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix B. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the bidiagonal matrix B. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is REAL array, dimension (N-1) *> The (n-1) superdiagonal elements of the bidiagonal matrix B *> if UPLO = 'U', or the (n-1) subdiagonal elements of B if *> UPLO = 'L'. *> \endverbatim *> *> \param[in] S *> \verbatim *> S is REAL array, dimension (NS) *> The singular values from the (partial) SVD of B, sorted in *> decreasing order. *> \endverbatim *> *> \param[in] NS *> \verbatim *> NS is INTEGER *> The number of singular values/vectors from the (partial) *> SVD of B. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is REAL array, dimension (LDU,NS) *> The n by ns orthogonal matrix U in S = U' * B * V. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= max(1,N) *> \endverbatim *> *> \param[in] VT *> \verbatim *> VT is REAL array, dimension (LDVT,N) *> The n by ns orthogonal matrix V in S = U' * B * V. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (2*N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The test ratio: norm(S - U' * B * V) / ( n * norm(B) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_eig * * ===================================================================== SUBROUTINE SBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT, WORK, $ RESID ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDU, LDVT, N, NS REAL RESID * .. * .. Array Arguments .. REAL D( * ), E( * ), S( * ), U( LDU, * ), $ VT( LDVT, * ), WORK( * ) * .. * * ====================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J, K REAL BNORM, EPS * .. * .. External Functions .. LOGICAL LSAME INTEGER ISAMAX REAL SASUM, SLAMCH EXTERNAL LSAME, ISAMAX, SASUM, SLAMCH * .. * .. External Subroutines .. EXTERNAL SGEMM * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, MAX, MIN * .. * .. Executable Statements .. * * Quick return if possible. * RESID = ZERO IF( N.LE.0 .OR. NS.LE.0 ) $ RETURN * EPS = SLAMCH( 'Precision' ) * * Compute S - U' * B * V. * BNORM = ZERO * IF( LSAME( UPLO, 'U' ) ) THEN * * B is upper bidiagonal. * K = 0 DO 20 I = 1, NS DO 10 J = 1, N-1 K = K + 1 WORK( K ) = D( J )*VT( I, J ) + E( J )*VT( I, J+1 ) 10 CONTINUE K = K + 1 WORK( K ) = D( N )*VT( I, N ) 20 CONTINUE BNORM = ABS( D( 1 ) ) DO 30 I = 2, N BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I-1 ) ) ) 30 CONTINUE ELSE * * B is lower bidiagonal. * K = 0 DO 50 I = 1, NS K = K + 1 WORK( K ) = D( 1 )*VT( I, 1 ) DO 40 J = 1, N-1 K = K + 1 WORK( K ) = E( J )*VT( I, J ) + D( J+1 )*VT( I, J+1 ) 40 CONTINUE 50 CONTINUE BNORM = ABS( D( N ) ) DO 60 I = 1, N-1 BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I ) ) ) 60 CONTINUE END IF * CALL SGEMM( 'T', 'N', NS, NS, N, -ONE, U, LDU, WORK( 1 ), $ N, ZERO, WORK( 1+N*NS ), NS ) * * norm(S - U' * B * V) * K = N*NS DO 70 I = 1, NS WORK( K+I ) = WORK( K+I ) + S( I ) RESID = MAX( RESID, SASUM( NS, WORK( K+1 ), 1 ) ) K = K + NS 70 CONTINUE * IF( BNORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE IF( BNORM.GE.RESID ) THEN RESID = ( RESID / BNORM ) / ( REAL( N )*EPS ) ELSE IF( BNORM.LT.ONE ) THEN RESID = ( MIN( RESID, REAL( N )*BNORM ) / BNORM ) / $ ( REAL( N )*EPS ) ELSE RESID = MIN( RESID / BNORM, REAL( N ) ) / $ ( REAL( N )*EPS ) END IF END IF END IF * RETURN * * End of SBDT04 * END