*> \brief \b ZUNGRQ
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZUNGRQ + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZUNGRQ generates an M-by-N complex matrix Q with orthonormal rows,
*> which is defined as the last M rows of a product of K elementary
*> reflectors of order N
*>
*> Q = H(1)**H H(2)**H . . . H(k)**H
*>
*> as returned by ZGERQF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix Q. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix Q. N >= M.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines the
*> matrix Q. M >= K >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the (m-k+i)-th row must contain the vector which
*> defines the elementary reflector H(i), for i = 1,2,...,k, as
*> returned by ZGERQF in the last k rows of its array argument
*> A.
*> On exit, the M-by-N matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The first dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by ZGERQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument has an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
$ LWKOPT, NB, NBMIN, NX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLARFB, ZLARFT, ZUNGR2
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.M ) THEN
INFO = -2
ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
END IF
*
IF( INFO.EQ.0 ) THEN
IF( M.LE.0 ) THEN
LWKOPT = 1
ELSE
NB = ILAENV( 1, 'ZUNGRQ', ' ', M, N, K, -1 )
LWKOPT = M*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZUNGRQ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.LE.0 ) THEN
RETURN
END IF
*
NBMIN = 2
NX = 0
IWS = M
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'ZUNGRQ', ' ', M, N, K, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = M
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'ZUNGRQ', ' ', M, N, K, -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code after the first block.
* The last kk rows are handled by the block method.
*
KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
*
* Set A(1:m-kk,n-kk+1:n) to zero.
*
DO 20 J = N - KK + 1, N
DO 10 I = 1, M - KK
A( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
KK = 0
END IF
*
* Use unblocked code for the first or only block.
*
CALL ZUNGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
*
IF( KK.GT.0 ) THEN
*
* Use blocked code
*
DO 50 I = K - KK + 1, K, NB
IB = MIN( NB, K-I+1 )
II = M - K + I
IF( II.GT.1 ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i+ib-1) . . . H(i+1) H(i)
*
CALL ZLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
$ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
*
* Apply H**H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
*
CALL ZLARFB( 'Right', 'Conjugate transpose', 'Backward',
$ 'Rowwise', II-1, N-K+I+IB-1, IB, A( II, 1 ),
$ LDA, WORK, LDWORK, A, LDA, WORK( IB+1 ),
$ LDWORK )
END IF
*
* Apply H**H to columns 1:n-k+i+ib-1 of current block
*
CALL ZUNGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
$ WORK, IINFO )
*
* Set columns n-k+i+ib:n of current block to zero
*
DO 40 L = N - K + I + IB, N
DO 30 J = II, II + IB - 1
A( J, L ) = ZERO
30 CONTINUE
40 CONTINUE
50 CONTINUE
END IF
*
WORK( 1 ) = IWS
RETURN
*
* End of ZUNGRQ
*
END