*> \brief \b ZPFTRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZPFTRS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANSR, UPLO
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* COMPLEX*16 A( 0: * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPFTRS solves a system of linear equations A*X = B with a Hermitian
*> positive definite matrix A using the Cholesky factorization
*> A = U**H*U or A = L*L**H computed by ZPFTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSR
*> \verbatim
*> TRANSR is CHARACTER*1
*> = 'N': The Normal TRANSR of RFP A is stored;
*> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of RFP A is stored;
*> = 'L': Lower triangle of RFP A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
*> The triangular factor U or L from the Cholesky factorization
*> of RFP A = U**H*U or RFP A = L*L**H, as computed by ZPFTRF.
*> See note below for more details about RFP A.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> We first consider Standard Packed Format when N is even.
*> We give an example where N = 6.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*> conjugate-transpose of the first three columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*> conjugate-transpose of the last three columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N even and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- -- --
*> 03 04 05 33 43 53
*> -- --
*> 13 14 15 00 44 54
*> --
*> 23 24 25 10 11 55
*>
*> 33 34 35 20 21 22
*> --
*> 00 44 45 30 31 32
*> -- --
*> 01 11 55 40 41 42
*> -- -- --
*> 02 12 22 50 51 52
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- -- --
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> -- -- -- -- -- -- -- -- -- --
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
*>
*>
*> We next consider Standard Packed Format when N is odd.
*> We give an example where N = 5.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*> conjugate-transpose of the first two columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*> conjugate-transpose of the last two columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N odd and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- --
*> 02 03 04 00 33 43
*> --
*> 12 13 14 10 11 44
*>
*> 22 23 24 20 21 22
*> --
*> 00 33 34 30 31 32
*> -- --
*> 01 11 44 40 41 42
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- --
*> 02 12 22 00 01 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- --
*> 03 13 23 33 11 33 11 21 31 41 51
*> -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 43 44 22 32 42 52
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER TRANSR, UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
COMPLEX*16 A( 0: * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LOWER, NORMALTRANSR
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZTFSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NORMALTRANSR = LSAME( TRANSR, 'N' )
LOWER = LSAME( UPLO, 'L' )
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPFTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* start execution: there are two triangular solves
*
IF( LOWER ) THEN
CALL ZTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, CONE, A, B,
$ LDB )
CALL ZTFSM( TRANSR, 'L', UPLO, 'C', 'N', N, NRHS, CONE, A, B,
$ LDB )
ELSE
CALL ZTFSM( TRANSR, 'L', UPLO, 'C', 'N', N, NRHS, CONE, A, B,
$ LDB )
CALL ZTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, CONE, A, B,
$ LDB )
END IF
*
RETURN
*
* End of ZPFTRS
*
END