*> \brief \b ZHPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHPTRI + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 AP( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
*> A in packed storage using the factorization A = U*D*U**H or
*> A = L*D*L**H computed by ZHPTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
*> = 'U': Upper triangular, form is A = U*D*U**H;
*> = 'L': Lower triangular, form is A = L*D*L**H.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZHPTRF,
*> stored as a packed triangular matrix.
*>
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
*> if UPLO = 'L',
*> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D
*> as determined by ZHPTRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*> inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 AP( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
COMPLEX*16 CONE, ZERO
PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
DOUBLE PRECISION AK, AKP1, D, T
COMPLEX*16 AKKP1, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX*16 ZDOTC
EXTERNAL LSAME, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZCOPY, ZHPMV, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Check that the diagonal matrix D is nonsingular.
*
IF( UPPER ) THEN
*
* Upper triangular storage: examine D from bottom to top
*
KP = N*( N+1 ) / 2
DO 10 INFO = N, 1, -1
IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
$ RETURN
KP = KP - INFO
10 CONTINUE
ELSE
*
* Lower triangular storage: examine D from top to bottom.
*
KP = 1
DO 20 INFO = 1, N
IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
$ RETURN
KP = KP + N - INFO + 1
20 CONTINUE
END IF
INFO = 0
*
IF( UPPER ) THEN
*
* Compute inv(A) from the factorization A = U*D*U**H.
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2, depending on the size of the diagonal blocks.
*
K = 1
KC = 1
30 CONTINUE
*
* If K > N, exit from loop.
*
IF( K.GT.N )
$ GO TO 50
*
KCNEXT = KC + K
IF( IPIV( K ).GT.0 ) THEN
*
* 1 x 1 diagonal block
*
* Invert the diagonal block.
*
AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
*
* Compute column K of the inverse.
*
IF( K.GT.1 ) THEN
CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
$ AP( KC ), 1 )
AP( KC+K-1 ) = AP( KC+K-1 ) -
$ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
END IF
KSTEP = 1
ELSE
*
* 2 x 2 diagonal block
*
* Invert the diagonal block.
*
T = ABS( AP( KCNEXT+K-1 ) )
AK = DBLE( AP( KC+K-1 ) ) / T
AKP1 = DBLE( AP( KCNEXT+K ) ) / T
AKKP1 = AP( KCNEXT+K-1 ) / T
D = T*( AK*AKP1-ONE )
AP( KC+K-1 ) = AKP1 / D
AP( KCNEXT+K ) = AK / D
AP( KCNEXT+K-1 ) = -AKKP1 / D
*
* Compute columns K and K+1 of the inverse.
*
IF( K.GT.1 ) THEN
CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
$ AP( KC ), 1 )
AP( KC+K-1 ) = AP( KC+K-1 ) -
$ DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
$ ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
$ 1 )
CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
$ AP( KCNEXT ), 1 )
AP( KCNEXT+K ) = AP( KCNEXT+K ) -
$ DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
$ 1 ) )
END IF
KSTEP = 2
KCNEXT = KCNEXT + K + 1
END IF
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K ) THEN
*
* Interchange rows and columns K and KP in the leading
* submatrix A(1:k+1,1:k+1)
*
KPC = ( KP-1 )*KP / 2 + 1
CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
KX = KPC + KP - 1
DO 40 J = KP + 1, K - 1
KX = KX + J - 1
TEMP = DCONJG( AP( KC+J-1 ) )
AP( KC+J-1 ) = DCONJG( AP( KX ) )
AP( KX ) = TEMP
40 CONTINUE
AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
TEMP = AP( KC+K-1 )
AP( KC+K-1 ) = AP( KPC+KP-1 )
AP( KPC+KP-1 ) = TEMP
IF( KSTEP.EQ.2 ) THEN
TEMP = AP( KC+K+K-1 )
AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
AP( KC+K+KP-1 ) = TEMP
END IF
END IF
*
K = K + KSTEP
KC = KCNEXT
GO TO 30
50 CONTINUE
*
ELSE
*
* Compute inv(A) from the factorization A = L*D*L**H.
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2, depending on the size of the diagonal blocks.
*
NPP = N*( N+1 ) / 2
K = N
KC = NPP
60 CONTINUE
*
* If K < 1, exit from loop.
*
IF( K.LT.1 )
$ GO TO 80
*
KCNEXT = KC - ( N-K+2 )
IF( IPIV( K ).GT.0 ) THEN
*
* 1 x 1 diagonal block
*
* Invert the diagonal block.
*
AP( KC ) = ONE / DBLE( AP( KC ) )
*
* Compute column K of the inverse.
*
IF( K.LT.N ) THEN
CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
$ ZERO, AP( KC+1 ), 1 )
AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
$ AP( KC+1 ), 1 ) )
END IF
KSTEP = 1
ELSE
*
* 2 x 2 diagonal block
*
* Invert the diagonal block.
*
T = ABS( AP( KCNEXT+1 ) )
AK = DBLE( AP( KCNEXT ) ) / T
AKP1 = DBLE( AP( KC ) ) / T
AKKP1 = AP( KCNEXT+1 ) / T
D = T*( AK*AKP1-ONE )
AP( KCNEXT ) = AKP1 / D
AP( KC ) = AK / D
AP( KCNEXT+1 ) = -AKKP1 / D
*
* Compute columns K-1 and K of the inverse.
*
IF( K.LT.N ) THEN
CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
$ 1, ZERO, AP( KC+1 ), 1 )
AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
$ AP( KC+1 ), 1 ) )
AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
$ ZDOTC( N-K, AP( KC+1 ), 1,
$ AP( KCNEXT+2 ), 1 )
CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
$ 1, ZERO, AP( KCNEXT+2 ), 1 )
AP( KCNEXT ) = AP( KCNEXT ) -
$ DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
$ 1 ) )
END IF
KSTEP = 2
KCNEXT = KCNEXT - ( N-K+3 )
END IF
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K ) THEN
*
* Interchange rows and columns K and KP in the trailing
* submatrix A(k-1:n,k-1:n)
*
KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
IF( KP.LT.N )
$ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
KX = KC + KP - K
DO 70 J = K + 1, KP - 1
KX = KX + N - J + 1
TEMP = DCONJG( AP( KC+J-K ) )
AP( KC+J-K ) = DCONJG( AP( KX ) )
AP( KX ) = TEMP
70 CONTINUE
AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
TEMP = AP( KC )
AP( KC ) = AP( KPC )
AP( KPC ) = TEMP
IF( KSTEP.EQ.2 ) THEN
TEMP = AP( KC-N+K-1 )
AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
AP( KC-N+KP-1 ) = TEMP
END IF
END IF
*
K = K - KSTEP
KC = KCNEXT
GO TO 60
80 CONTINUE
END IF
*
RETURN
*
* End of ZHPTRI
*
END