*> \brief \b ZHEGST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHEGVX + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
* LWORK, RWORK, IWORK, IFAIL, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, RANGE, UPLO
* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
* DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
* INTEGER IFAIL( * ), IWORK( * )
* DOUBLE PRECISION RWORK( * ), W( * )
* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
* $ Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
*> of a complex generalized Hermitian-definite eigenproblem, of the form
*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
*> B are assumed to be Hermitian and B is also positive definite.
*> Eigenvalues and eigenvectors can be selected by specifying either a
*> range of values or a range of indices for the desired eigenvalues.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> Specifies the problem type to be solved:
*> = 1: A*x = (lambda)*B*x
*> = 2: A*B*x = (lambda)*x
*> = 3: B*A*x = (lambda)*x
*> \endverbatim
*>
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*> RANGE is CHARACTER*1
*> = 'A': all eigenvalues will be found.
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
*> will be found.
*> = 'I': the IL-th through IU-th eigenvalues will be found.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of A contains the
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
*>
*> On exit, the lower triangle (if UPLO='L') or the upper
*> triangle (if UPLO='U') of A, including the diagonal, is
*> destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB, N)
*> On entry, the Hermitian matrix B. If UPLO = 'U', the
*> leading N-by-N upper triangular part of B contains the
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*> VL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*> IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*> Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*> ABSTOL is DOUBLE PRECISION
*> The absolute error tolerance for the eigenvalues.
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing C to tridiagonal form, where C is the symmetric
*> matrix of the standard symmetric problem to which the
*> generalized problem is transformed.
*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The total number of eigenvalues found. 0 <= M <= N.
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> The first M elements contain the selected
*> eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
*> If JOBZ = 'N', then Z is not referenced.
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*> contain the orthonormal eigenvectors of the matrix A
*> corresponding to the selected eigenvalues, with the i-th
*> column of Z holding the eigenvector associated with W(i).
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
*> Note: the user must ensure that at least max(1,M) columns are
*> supplied in the array Z; if RANGE = 'V', the exact value of M
*> is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1, and if
*> JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,2*N).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for ZHETRD returned by ILAENV.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (7*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IFAIL
*> \verbatim
*> IFAIL is INTEGER array, dimension (N)
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
*> indices of the eigenvectors that failed to converge.
*> If JOBZ = 'N', then IFAIL is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: ZPOTRF or ZHEEVX returned an error code:
*> <= N: if INFO = i, ZHEEVX failed to converge;
*> i eigenvectors failed to converge. Their indices
*> are stored in array IFAIL.
*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
*> minor of order i of B is not positive definite.
*> The factorization of B could not be completed and
*> no eigenvalues or eigenvectors were computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16HEeigen
*
*> \par Contributors:
* ==================
*>
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
* =====================================================================
SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
$ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
$ LWORK, RWORK, IWORK, IFAIL, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
CHARACTER TRANS
INTEGER LWKOPT, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZHEEVX, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -3
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -11
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -13
END IF
END IF
END IF
IF (INFO.EQ.0) THEN
IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
INFO = -18
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 1, ( NB + 1 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHEGVX', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
RETURN
END IF
*
* Form a Cholesky factorization of B.
*
CALL ZPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
$ INFO )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
IF( INFO.GT.0 )
$ M = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
$ LDB, Z, LDZ )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**H *y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
$ LDB, Z, LDZ )
END IF
END IF
*
* Set WORK(1) to optimal complex workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of ZHEGVX
*
END