*> \brief \b ZHEGST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download ZHEGV + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*
* Definition
* ==========
*
* SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
* LWORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, UPLO
* INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * ), W( * )
* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
*> of a complex generalized Hermitian-definite eigenproblem, of the form
*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
*> Here A and B are assumed to be Hermitian and B is also
*> positive definite.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> Specifies the problem type to be solved:
*> = 1: A*x = (lambda)*B*x
*> = 2: A*B*x = (lambda)*x
*> = 3: B*A*x = (lambda)*x
*> \endverbatim
*>
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of A contains the
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
*> \endverbatim
*> \verbatim
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
*> if ITYPE = 1 or 2, Z**H*B*Z = I;
*> if ITYPE = 3, Z**H*inv(B)*Z = I.
*> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
*> or the lower triangle (if UPLO='L') of A, including the
*> diagonal, is destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB, N)
*> On entry, the Hermitian positive definite matrix B.
*> If UPLO = 'U', the leading N-by-N upper triangular part of B
*> contains the upper triangular part of the matrix B.
*> If UPLO = 'L', the leading N-by-N lower triangular part of B
*> contains the lower triangular part of the matrix B.
*> \endverbatim
*> \verbatim
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for ZHETRD returned by ILAENV.
*> \endverbatim
*> \verbatim
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: ZPOTRF or ZHEEV returned an error code:
*> <= N: if INFO = i, ZHEEV failed to converge;
*> i off-diagonal elements of an intermediate
*> tridiagonal form did not converge to zero;
*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
*> minor of order i of B is not positive definite.
*> The factorization of B could not be completed and
*> no eigenvalues or eigenvectors were computed.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16HEeigen
*
* =====================================================================
SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
$ LWORK, RWORK, INFO )
*
* -- LAPACK eigen routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER, WANTZ
CHARACTER TRANS
INTEGER LWKOPT, NB, NEIG
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZHEEV, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 1, ( NB + 1 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, 2*N - 1 ) .AND. .NOT.LQUERY ) THEN
INFO = -11
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHEGV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form a Cholesky factorization of B.
*
CALL ZPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
NEIG = N
IF( INFO.GT.0 )
$ NEIG = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, LDB, A, LDA )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**H *y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, LDB, A, LDA )
END IF
END IF
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of ZHEGV
*
END