*> \brief \b ZGGHRD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> Download ZGGHRD + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] * * Definition * ========== * * SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * LDQ, Z, LDZ, INFO ) * * .. Scalar Arguments .. * CHARACTER COMPQ, COMPZ * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ Z( LDZ, * ) * .. * * Purpose * ======= * *>\details \b Purpose: *>\verbatim *> *> ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper *> Hessenberg form using unitary transformations, where A is a *> general matrix and B is upper triangular. The form of the *> generalized eigenvalue problem is *> A*x = lambda*B*x, *> and B is typically made upper triangular by computing its QR *> factorization and moving the unitary matrix Q to the left side *> of the equation. *> *> This subroutine simultaneously reduces A to a Hessenberg matrix H: *> Q**H*A*Z = H *> and transforms B to another upper triangular matrix T: *> Q**H*B*Z = T *> in order to reduce the problem to its standard form *> H*y = lambda*T*y *> where y = Z**H*x. *> *> The unitary matrices Q and Z are determined as products of Givens *> rotations. They may either be formed explicitly, or they may be *> postmultiplied into input matrices Q1 and Z1, so that *> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H *> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H *> If Q1 is the unitary matrix from the QR factorization of B in the *> original equation A*x = lambda*B*x, then ZGGHRD reduces the original *> problem to generalized Hessenberg form. *> *>\endverbatim * * Arguments * ========= * *> \param[in] COMPQ *> \verbatim *> COMPQ is CHARACTER*1 *> = 'N': do not compute Q; *> = 'I': Q is initialized to the unit matrix, and the *> unitary matrix Q is returned; *> = 'V': Q must contain a unitary matrix Q1 on entry, *> and the product Q1*Q is returned. *> \endverbatim *> *> \param[in] COMPZ *> \verbatim *> COMPZ is CHARACTER*1 *> = 'N': do not compute Q; *> = 'I': Q is initialized to the unit matrix, and the *> unitary matrix Q is returned; *> = 'V': Q must contain a unitary matrix Q1 on entry, *> and the product Q1*Q is returned. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of A which are to be *> reduced. It is assumed that A is already upper triangular *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are *> normally set by a previous call to ZGGBAL; otherwise they *> should be set to 1 and N respectively. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *> \endverbatim *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the N-by-N general matrix to be reduced. *> On exit, the upper triangle and the first subdiagonal of A *> are overwritten with the upper Hessenberg matrix H, and the *> rest is set to zero. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, the N-by-N upper triangular matrix B. *> On exit, the upper triangular matrix T = Q**H B Z. The *> elements below the diagonal are set to zero. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ, N) *> On entry, if COMPQ = 'V', the unitary matrix Q1, typically *> from the QR factorization of B. *> On exit, if COMPQ='I', the unitary matrix Q, and if *> COMPQ = 'V', the product Q1*Q. *> Not referenced if COMPQ='N'. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ, N) *> On entry, if COMPZ = 'V', the unitary matrix Z1. *> On exit, if COMPZ='I', the unitary matrix Z, and if *> COMPZ = 'V', the product Z1*Z. *> Not referenced if COMPZ='N'. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim *> * * Authors * ======= * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16OTHERcomputational * * * Further Details * =============== *>\details \b Further \b Details *> \verbatim *> *> This routine reduces A to Hessenberg and B to triangular form by *> an unblocked reduction, as described in _Matrix_Computations_, *> by Golub and van Loan (Johns Hopkins Press). *> *> \endverbatim *> * ===================================================================== SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, $ LDQ, Z, LDZ, INFO ) * * -- LAPACK computational routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER COMPQ, COMPZ INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CONE, CZERO PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), $ CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL ILQ, ILZ INTEGER ICOMPQ, ICOMPZ, JCOL, JROW DOUBLE PRECISION C COMPLEX*16 CTEMP, S * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZLARTG, ZLASET, ZROT * .. * .. Intrinsic Functions .. INTRINSIC DCONJG, MAX * .. * .. Executable Statements .. * * Decode COMPQ * IF( LSAME( COMPQ, 'N' ) ) THEN ILQ = .FALSE. ICOMPQ = 1 ELSE IF( LSAME( COMPQ, 'V' ) ) THEN ILQ = .TRUE. ICOMPQ = 2 ELSE IF( LSAME( COMPQ, 'I' ) ) THEN ILQ = .TRUE. ICOMPQ = 3 ELSE ICOMPQ = 0 END IF * * Decode COMPZ * IF( LSAME( COMPZ, 'N' ) ) THEN ILZ = .FALSE. ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ILZ = .TRUE. ICOMPZ = 2 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ILZ = .TRUE. ICOMPZ = 3 ELSE ICOMPZ = 0 END IF * * Test the input parameters. * INFO = 0 IF( ICOMPQ.LE.0 ) THEN INFO = -1 ELSE IF( ICOMPZ.LE.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( ILO.LT.1 ) THEN INFO = -4 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN INFO = -11 ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN INFO = -13 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGHRD', -INFO ) RETURN END IF * * Initialize Q and Z if desired. * IF( ICOMPQ.EQ.3 ) $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ ) IF( ICOMPZ.EQ.3 ) $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ ) * * Quick return if possible * IF( N.LE.1 ) $ RETURN * * Zero out lower triangle of B * DO 20 JCOL = 1, N - 1 DO 10 JROW = JCOL + 1, N B( JROW, JCOL ) = CZERO 10 CONTINUE 20 CONTINUE * * Reduce A and B * DO 40 JCOL = ILO, IHI - 2 * DO 30 JROW = IHI, JCOL + 2, -1 * * Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) * CTEMP = A( JROW-1, JCOL ) CALL ZLARTG( CTEMP, A( JROW, JCOL ), C, S, $ A( JROW-1, JCOL ) ) A( JROW, JCOL ) = CZERO CALL ZROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA, $ A( JROW, JCOL+1 ), LDA, C, S ) CALL ZROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB, $ B( JROW, JROW-1 ), LDB, C, S ) IF( ILQ ) $ CALL ZROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, $ DCONJG( S ) ) * * Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) * CTEMP = B( JROW, JROW ) CALL ZLARTG( CTEMP, B( JROW, JROW-1 ), C, S, $ B( JROW, JROW ) ) B( JROW, JROW-1 ) = CZERO CALL ZROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S ) CALL ZROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C, $ S ) IF( ILZ ) $ CALL ZROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S ) 30 CONTINUE 40 CONTINUE * RETURN * * End of ZGGHRD * END