*> \brief \b ZGETRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGETRS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGETRS solves a system of linear equations
*> A * X = B, A**T * X = B, or A**H * X = B
*> with a general N-by-N matrix A using the LU factorization computed
*> by ZGETRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The factors L and U from the factorization A = P*L*U
*> as computed by ZGETRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from ZGETRF; for 1<=i<=N, row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16GEcomputational
*
* =====================================================================
SUBROUTINE ZGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLASWP, ZTRSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGETRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( NOTRAN ) THEN
*
* Solve A * X = B.
*
* Apply row interchanges to the right hand sides.
*
CALL ZLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
* Solve L*X = B, overwriting B with X.
*
CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
* Solve U*X = B, overwriting B with X.
*
CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
$ NRHS, ONE, A, LDA, B, LDB )
ELSE
*
* Solve A**T * X = B or A**H * X = B.
*
* Solve U**T *X = B or U**H *X = B, overwriting B with X.
*
CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
$ A, LDA, B, LDB )
*
* Solve L**T *X = B, or L**H *X = B overwriting B with X.
*
CALL ZTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
$ LDA, B, LDB )
*
* Apply row interchanges to the solution vectors.
*
CALL ZLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
END IF
*
RETURN
*
* End of ZGETRS
*
END