SUBROUTINE ZGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, $ R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, $ WORK, RWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- * -- Jason Riedy of Univ. of California Berkeley. -- * -- November 2008 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley and NAG Ltd. -- * IMPLICIT NONE * .. * .. Scalar Arguments .. CHARACTER TRANS, EQUED INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, $ N_ERR_BNDS DOUBLE PRECISION RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), $ X( LDX , * ), WORK( * ) DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ), $ ERR_BNDS_NORM( NRHS, * ), $ ERR_BNDS_COMP( NRHS, * ), RWORK( * ) * .. * * Purpose * ======= * * ZGERFSX improves the computed solution to a system of linear * equations and provides error bounds and backward error estimates * for the solution. In addition to normwise error bound, the code * provides maximum componentwise error bound if possible. See * comments for ERR_BNDS_N and ERR_BNDS_C for details of the error * bounds. * * The original system of linear equations may have been equilibrated * before calling this routine, as described by arguments EQUED, R * and C below. In this case, the solution and error bounds returned * are for the original unequilibrated system. * * Arguments * ========= * * Some optional parameters are bundled in the PARAMS array. These * settings determine how refinement is performed, but often the * defaults are acceptable. If the defaults are acceptable, users * can pass NPARAMS = 0 which prevents the source code from accessing * the PARAMS argument. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose = Transpose) * * EQUED (input) CHARACTER*1 * Specifies the form of equilibration that was done to A * before calling this routine. This is needed to compute * the solution and error bounds correctly. * = 'N': No equilibration * = 'R': Row equilibration, i.e., A has been premultiplied by * diag(R). * = 'C': Column equilibration, i.e., A has been postmultiplied * by diag(C). * = 'B': Both row and column equilibration, i.e., A has been * replaced by diag(R) * A * diag(C). * The right hand side B has been changed accordingly. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The original N-by-N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AF (input) COMPLEX*16 array, dimension (LDAF,N) * The factors L and U from the factorization A = P*L*U * as computed by ZGETRF. * * LDAF (input) INTEGER * The leading dimension of the array AF. LDAF >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from ZGETRF; for 1<=i<=N, row i of the * matrix was interchanged with row IPIV(i). * * R (input or output) DOUBLE PRECISION array, dimension (N) * The row scale factors for A. If EQUED = 'R' or 'B', A is * multiplied on the left by diag(R); if EQUED = 'N' or 'C', R * is not accessed. R is an input argument if FACT = 'F'; * otherwise, R is an output argument. If FACT = 'F' and * EQUED = 'R' or 'B', each element of R must be positive. * If R is output, each element of R is a power of the radix. * If R is input, each element of R should be a power of the radix * to ensure a reliable solution and error estimates. Scaling by * powers of the radix does not cause rounding errors unless the * result underflows or overflows. Rounding errors during scaling * lead to refining with a matrix that is not equivalent to the * input matrix, producing error estimates that may not be * reliable. * * C (input or output) DOUBLE PRECISION array, dimension (N) * The column scale factors for A. If EQUED = 'C' or 'B', A is * multiplied on the right by diag(C); if EQUED = 'N' or 'R', C * is not accessed. C is an input argument if FACT = 'F'; * otherwise, C is an output argument. If FACT = 'F' and * EQUED = 'C' or 'B', each element of C must be positive. * If C is output, each element of C is a power of the radix. * If C is input, each element of C should be a power of the radix * to ensure a reliable solution and error estimates. Scaling by * powers of the radix does not cause rounding errors unless the * result underflows or overflows. Rounding errors during scaling * lead to refining with a matrix that is not equivalent to the * input matrix, producing error estimates that may not be * reliable. * * B (input) COMPLEX*16 array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by ZGETRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) DOUBLE PRECISION * Reciprocal scaled condition number. This is an estimate of the * reciprocal Skeel condition number of the matrix A after * equilibration (if done). If this is less than the machine * precision (in particular, if it is zero), the matrix is singular * to working precision. Note that the error may still be small even * if this number is very small and the matrix appears ill- * conditioned. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * Componentwise relative backward error. This is the * componentwise relative backward error of each solution vector X(j) * (i.e., the smallest relative change in any element of A or B that * makes X(j) an exact solution). * * N_ERR_BNDS (input) INTEGER * Number of error bounds to return for each right hand side * and each type (normwise or componentwise). See ERR_BNDS_NORM and * ERR_BNDS_COMP below. * * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) * For each right-hand side, this array contains information about * various error bounds and condition numbers corresponding to the * normwise relative error, which is defined as follows: * * Normwise relative error in the ith solution vector: * max_j (abs(XTRUE(j,i) - X(j,i))) * ------------------------------ * max_j abs(X(j,i)) * * The array is indexed by the type of error information as described * below. There currently are up to three pieces of information * returned. * * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith * right-hand side. * * The second index in ERR_BNDS_NORM(:,err) contains the following * three fields: * err = 1 "Trust/don't trust" boolean. Trust the answer if the * reciprocal condition number is less than the threshold * sqrt(n) * dlamch('Epsilon'). * * err = 2 "Guaranteed" error bound: The estimated forward error, * almost certainly within a factor of 10 of the true error * so long as the next entry is greater than the threshold * sqrt(n) * dlamch('Epsilon'). This error bound should only * be trusted if the previous boolean is true. * * err = 3 Reciprocal condition number: Estimated normwise * reciprocal condition number. Compared with the threshold * sqrt(n) * dlamch('Epsilon') to determine if the error * estimate is "guaranteed". These reciprocal condition * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some * appropriately scaled matrix Z. * Let Z = S*A, where S scales each row by a power of the * radix so all absolute row sums of Z are approximately 1. * * See Lapack Working Note 165 for further details and extra * cautions. * * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) * For each right-hand side, this array contains information about * various error bounds and condition numbers corresponding to the * componentwise relative error, which is defined as follows: * * Componentwise relative error in the ith solution vector: * abs(XTRUE(j,i) - X(j,i)) * max_j ---------------------- * abs(X(j,i)) * * The array is indexed by the right-hand side i (on which the * componentwise relative error depends), and the type of error * information as described below. There currently are up to three * pieces of information returned for each right-hand side. If * componentwise accuracy is not requested (PARAMS(3) = 0.0), then * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most * the first (:,N_ERR_BNDS) entries are returned. * * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith * right-hand side. * * The second index in ERR_BNDS_COMP(:,err) contains the following * three fields: * err = 1 "Trust/don't trust" boolean. Trust the answer if the * reciprocal condition number is less than the threshold * sqrt(n) * dlamch('Epsilon'). * * err = 2 "Guaranteed" error bound: The estimated forward error, * almost certainly within a factor of 10 of the true error * so long as the next entry is greater than the threshold * sqrt(n) * dlamch('Epsilon'). This error bound should only * be trusted if the previous boolean is true. * * err = 3 Reciprocal condition number: Estimated componentwise * reciprocal condition number. Compared with the threshold * sqrt(n) * dlamch('Epsilon') to determine if the error * estimate is "guaranteed". These reciprocal condition * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some * appropriately scaled matrix Z. * Let Z = S*(A*diag(x)), where x is the solution for the * current right-hand side and S scales each row of * A*diag(x) by a power of the radix so all absolute row * sums of Z are approximately 1. * * See Lapack Working Note 165 for further details and extra * cautions. * * NPARAMS (input) INTEGER * Specifies the number of parameters set in PARAMS. If .LE. 0, the * PARAMS array is never referenced and default values are used. * * PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS * Specifies algorithm parameters. If an entry is .LT. 0.0, then * that entry will be filled with default value used for that * parameter. Only positions up to NPARAMS are accessed; defaults * are used for higher-numbered parameters. * * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative * refinement or not. * Default: 1.0D+0 * = 0.0 : No refinement is performed, and no error bounds are * computed. * = 1.0 : Use the double-precision refinement algorithm, * possibly with doubled-single computations if the * compilation environment does not support DOUBLE * PRECISION. * (other values are reserved for future use) * * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual * computations allowed for refinement. * Default: 10 * Aggressive: Set to 100 to permit convergence using approximate * factorizations or factorizations other than LU. If * the factorization uses a technique other than * Gaussian elimination, the guarantees in * err_bnds_norm and err_bnds_comp may no longer be * trustworthy. * * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code * will attempt to find a solution with small componentwise * relative error in the double-precision algorithm. Positive * is true, 0.0 is false. * Default: 1.0 (attempt componentwise convergence) * * WORK (workspace) DOUBLE PRECISION array, dimension (4*N) * * IWORK (workspace) INTEGER array, dimension (N) * * INFO (output) INTEGER * = 0: Successful exit. The solution to every right-hand side is * guaranteed. * < 0: If INFO = -i, the i-th argument had an illegal value * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization * has been completed, but the factor U is exactly singular, so * the solution and error bounds could not be computed. RCOND = 0 * is returned. * = N+J: The solution corresponding to the Jth right-hand side is * not guaranteed. The solutions corresponding to other right- * hand sides K with K > J may not be guaranteed as well, but * only the first such right-hand side is reported. If a small * componentwise error is not requested (PARAMS(3) = 0.0) then * the Jth right-hand side is the first with a normwise error * bound that is not guaranteed (the smallest J such * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) * the Jth right-hand side is the first with either a normwise or * componentwise error bound that is not guaranteed (the smallest * J such that either ERR_BNDS_NORM(J,1) = 0.0 or * ERR_BNDS_COMP(J,1) = 0.0). See the definition of * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information * about all of the right-hand sides check ERR_BNDS_NORM or * ERR_BNDS_COMP. * * ================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT DOUBLE PRECISION DZTHRESH_DEFAULT PARAMETER ( ITREF_DEFAULT = 1.0D+0 ) PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 ) PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 ) PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 ) PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 ) INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I, $ LA_LINRX_CWISE_I PARAMETER ( LA_LINRX_ITREF_I = 1, $ LA_LINRX_ITHRESH_I = 2 ) PARAMETER ( LA_LINRX_CWISE_I = 3 ) INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I, $ LA_LINRX_RCOND_I PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 ) PARAMETER ( LA_LINRX_RCOND_I = 3 ) * .. * .. Local Scalars .. CHARACTER(1) NORM LOGICAL ROWEQU, COLEQU, NOTRAN INTEGER J, TRANS_TYPE, PREC_TYPE, REF_TYPE INTEGER N_NORMS DOUBLE PRECISION ANORM, RCOND_TMP DOUBLE PRECISION ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG LOGICAL IGNORE_CWISE INTEGER ITHRESH DOUBLE PRECISION RTHRESH, UNSTABLE_THRESH * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGECON, ZLA_GERFSX_EXTENDED * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. External Functions .. EXTERNAL LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC EXTERNAL DLAMCH, ZLANGE, ZLA_GERCOND_X, ZLA_GERCOND_C DOUBLE PRECISION DLAMCH, ZLANGE, ZLA_GERCOND_X, ZLA_GERCOND_C LOGICAL LSAME INTEGER BLAS_FPINFO_X INTEGER ILATRANS, ILAPREC * .. * .. Executable Statements .. * * Check the input parameters. * INFO = 0 TRANS_TYPE = ILATRANS( TRANS ) REF_TYPE = INT( ITREF_DEFAULT ) IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT ELSE REF_TYPE = PARAMS( LA_LINRX_ITREF_I ) END IF END IF * * Set default parameters. * ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' ) ITHRESH = INT( ITHRESH_DEFAULT ) RTHRESH = RTHRESH_DEFAULT UNSTABLE_THRESH = DZTHRESH_DEFAULT IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0 * IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN PARAMS(LA_LINRX_ITHRESH_I) = ITHRESH ELSE ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) ) END IF END IF IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN IF ( IGNORE_CWISE ) THEN PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0 ELSE PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0 END IF ELSE IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0 END IF END IF IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN N_NORMS = 0 ELSE IF ( IGNORE_CWISE ) THEN N_NORMS = 1 ELSE N_NORMS = 2 END IF * NOTRAN = LSAME( TRANS, 'N' ) ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) * * Test input parameters. * IF( TRANS_TYPE.EQ.-1 ) THEN INFO = -1 ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND. $ .NOT.LSAME( EQUED, 'N' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -13 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -15 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGERFSX', -INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN RCOND = 1.0D+0 DO J = 1, NRHS BERR( J ) = 0.0D+0 IF ( N_ERR_BNDS .GE. 1 ) THEN ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 ELSE IF ( N_ERR_BNDS .GE. 2 ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0 ELSE IF ( N_ERR_BNDS .GE. 3 ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0 END IF END DO RETURN END IF * * Default to failure. * RCOND = 0.0D+0 DO J = 1, NRHS BERR( J ) = 1.0D+0 IF ( N_ERR_BNDS .GE. 1 ) THEN ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 ELSE IF ( N_ERR_BNDS .GE. 2 ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 ELSE IF ( N_ERR_BNDS .GE. 3 ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0 END IF END DO * * Compute the norm of A and the reciprocal of the condition * number of A. * IF( NOTRAN ) THEN NORM = 'I' ELSE NORM = '1' END IF ANORM = ZLANGE( NORM, N, N, A, LDA, WORK ) CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO ) * * Perform refinement on each right-hand side * IF ( REF_TYPE .NE. 0 ) THEN PREC_TYPE = ILAPREC( 'E' ) IF ( NOTRAN ) THEN CALL ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, $ NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B, $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, $ ERR_BNDS_COMP, WORK(N+1), RWORK, WORK(1), RWORK, RCOND, $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE, $ INFO ) ELSE CALL ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, $ NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, C, B, $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, $ ERR_BNDS_COMP, WORK(N+1), RWORK, WORK(1), RWORK, RCOND, $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE, $ INFO ) END IF END IF ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' ) IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN * * Compute scaled normwise condition number cond(A*C). * IF ( COLEQU .AND. NOTRAN ) THEN RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, $ C, .TRUE., INFO, WORK, RWORK ) ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, $ R, .TRUE., INFO, WORK, RWORK ) ELSE RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, $ C, .FALSE., INFO, WORK, RWORK ) END IF DO J = 1, NRHS * * Cap the error at 1.0. * IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 ) $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 * * Threshold the error (see LAWN). * IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0 IF ( INFO .LE. N ) INFO = N + J ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND) $ THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF * * Save the condition number. * IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP END IF END DO END IF IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN * * Compute componentwise condition number cond(A*diag(Y(:,J))) for * each right-hand side using the current solution as an estimate of * the true solution. If the componentwise error estimate is too * large, then the solution is a lousy estimate of truth and the * estimated RCOND may be too optimistic. To avoid misleading users, * the inverse condition number is set to 0.0 when the estimated * cwise error is at least CWISE_WRONG. * CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) ) DO J = 1, NRHS IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG ) $ THEN RCOND_TMP = ZLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, $ IPIV, X(1,J), INFO, WORK, RWORK ) ELSE RCOND_TMP = 0.0D+0 END IF * * Cap the error at 1.0. * IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 ) $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 * * Threshold the error (see LAWN). * IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0 IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0 $ .AND. INFO.LT.N + J ) INFO = N + J ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) $ .LT. ERR_LBND ) THEN ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF * * Save the condition number. * IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP END IF END DO END IF * RETURN * * End of ZGERFSX * END