*> \brief \b ZGEHRD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEHRD + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
*> an unitary similarity transformation: Q**H * A * Q = H .
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to ZGEBAL; otherwise they should be
*> set to 1 and N respectively. See Further Details.
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the N-by-N general matrix to be reduced.
*> On exit, the upper triangle and the first subdiagonal of A
*> are overwritten with the upper Hessenberg matrix H, and the
*> elements below the first subdiagonal, with the array TAU,
*> represent the unitary matrix Q as a product of elementary
*> reflectors. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (N-1)
*> The scalar factors of the elementary reflectors (see Further
*> Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
*> zero.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16GEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of (ihi-ilo) elementary
*> reflectors
*>
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
*> exit in A(i+2:ihi,i), and tau in TAU(i).
*>
*> The contents of A are illustrated by the following example, with
*> n = 7, ilo = 2 and ihi = 6:
*>
*> on entry, on exit,
*>
*> ( a a a a a a a ) ( a a h h h h a )
*> ( a a a a a a ) ( a h h h h a )
*> ( a a a a a a ) ( h h h h h h )
*> ( a a a a a a ) ( v2 h h h h h )
*> ( a a a a a a ) ( v2 v3 h h h h )
*> ( a a a a a a ) ( v2 v3 v4 h h h )
*> ( a ) ( a )
*>
*> where a denotes an element of the original matrix A, h denotes a
*> modified element of the upper Hessenberg matrix H, and vi denotes an
*> element of the vector defining H(i).
*>
*> This file is a slight modification of LAPACK-3.0's DGEHRD
*> subroutine incorporating improvements proposed by Quintana-Orti and
*> Van de Geijn (2006). (See DLAHR2.)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NBMAX, LDT
PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
$ NBMIN, NH, NX
COMPLEX*16 EI
* ..
* .. Local Arrays ..
COMPLEX*16 T( LDT, NBMAX )
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZGEHD2, ZGEMM, ZLAHR2, ZLARFB, ZTRMM,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEHRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
*
DO 10 I = 1, ILO - 1
TAU( I ) = ZERO
10 CONTINUE
DO 20 I = MAX( 1, IHI ), N - 1
TAU( I ) = ZERO
20 CONTINUE
*
* Quick return if possible
*
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Determine the block size
*
NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
NBMIN = 2
IWS = 1
IF( NB.GT.1 .AND. NB.LT.NH ) THEN
*
* Determine when to cross over from blocked to unblocked code
* (last block is always handled by unblocked code)
*
NX = MAX( NB, ILAENV( 3, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
IF( NX.LT.NH ) THEN
*
* Determine if workspace is large enough for blocked code
*
IWS = N*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: determine the
* minimum value of NB, and reduce NB or force use of
* unblocked code
*
NBMIN = MAX( 2, ILAENV( 2, 'ZGEHRD', ' ', N, ILO, IHI,
$ -1 ) )
IF( LWORK.GE.N*NBMIN ) THEN
NB = LWORK / N
ELSE
NB = 1
END IF
END IF
END IF
END IF
LDWORK = N
*
IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
*
* Use unblocked code below
*
I = ILO
*
ELSE
*
* Use blocked code
*
DO 40 I = ILO, IHI - 1 - NX, NB
IB = MIN( NB, IHI-I )
*
* Reduce columns i:i+ib-1 to Hessenberg form, returning the
* matrices V and T of the block reflector H = I - V*T*V**H
* which performs the reduction, and also the matrix Y = A*V*T
*
CALL ZLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
$ WORK, LDWORK )
*
* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
* right, computing A := A - Y * V**H. V(i+ib,ib-1) must be set
* to 1
*
EI = A( I+IB, I+IB-1 )
A( I+IB, I+IB-1 ) = ONE
CALL ZGEMM( 'No transpose', 'Conjugate transpose',
$ IHI, IHI-I-IB+1,
$ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
$ A( 1, I+IB ), LDA )
A( I+IB, I+IB-1 ) = EI
*
* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
* right
*
CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
$ 'Unit', I, IB-1,
$ ONE, A( I+1, I ), LDA, WORK, LDWORK )
DO 30 J = 0, IB-2
CALL ZAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
$ A( 1, I+J+1 ), 1 )
30 CONTINUE
*
* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
* left
*
CALL ZLARFB( 'Left', 'Conjugate transpose', 'Forward',
$ 'Columnwise',
$ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
$ A( I+1, I+IB ), LDA, WORK, LDWORK )
40 CONTINUE
END IF
*
* Use unblocked code to reduce the rest of the matrix
*
CALL ZGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
WORK( 1 ) = IWS
*
RETURN
*
* End of ZGEHRD
*
END