*> \brief \b STRTRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download STRTRS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE STRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> STRTRS solves a triangular system of the form
*>
*> A * X = B or A**T * X = B,
*>
*> where A is a triangular matrix of order N, and B is an N-by-NRHS
*> matrix. A check is made to verify that A is nonsingular.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The triangular matrix A. If UPLO = 'U', the leading N-by-N
*> upper triangular part of the array A contains the upper
*> triangular matrix, and the strictly lower triangular part of
*> A is not referenced. If UPLO = 'L', the leading N-by-N lower
*> triangular part of the array A contains the lower triangular
*> matrix, and the strictly upper triangular part of A is not
*> referenced. If DIAG = 'U', the diagonal elements of A are
*> also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, if INFO = 0, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of A is zero,
*> indicating that the matrix is singular and the solutions
*> X have not been computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE STRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB,
$ INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL STRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
$ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'STRTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Check for singularity.
*
IF( NOUNIT ) THEN
DO 10 INFO = 1, N
IF( A( INFO, INFO ).EQ.ZERO )
$ RETURN
10 CONTINUE
END IF
INFO = 0
*
* Solve A * x = b or A**T * x = b.
*
CALL STRSM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, LDA, B,
$ LDB )
*
RETURN
*
* End of STRTRS
*
END