*> \brief \b STPCON
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download STPCON + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*
* Definition
* ==========
*
* SUBROUTINE STPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORM, UPLO
* INTEGER INFO, N
* REAL RCOND
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL AP( * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> STPCON estimates the reciprocal of the condition number of a packed
*> triangular matrix A, in either the 1-norm or the infinity-norm.
*>
*> The norm of A is computed and an estimate is obtained for
*> norm(inv(A)), then the reciprocal of the condition number is
*> computed as
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies whether the 1-norm condition number or the
*> infinity-norm condition number is required:
*> = '1' or 'O': 1-norm;
*> = 'I': Infinity-norm.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is REAL array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> If DIAG = 'U', the diagonal elements of A are not referenced
*> and are assumed to be 1.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of the matrix A,
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE STPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER INFO, N
REAL RCOND
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL AP( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, ONENRM, UPPER
CHARACTER NORMIN
INTEGER IX, KASE, KASE1
REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SLAMCH, SLANTP
EXTERNAL LSAME, ISAMAX, SLAMCH, SLANTP
* ..
* .. External Subroutines ..
EXTERNAL SLACN2, SLATPS, SRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
NOUNIT = LSAME( DIAG, 'N' )
*
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'STPCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
END IF
*
RCOND = ZERO
SMLNUM = SLAMCH( 'Safe minimum' )*REAL( MAX( 1, N ) )
*
* Compute the norm of the triangular matrix A.
*
ANORM = SLANTP( NORM, UPLO, DIAG, N, AP, WORK )
*
* Continue only if ANORM > 0.
*
IF( ANORM.GT.ZERO ) THEN
*
* Estimate the norm of the inverse of A.
*
AINVNM = ZERO
NORMIN = 'N'
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KASE = 0
10 CONTINUE
CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(A).
*
CALL SLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
$ WORK, SCALE, WORK( 2*N+1 ), INFO )
ELSE
*
* Multiply by inv(A**T).
*
CALL SLATPS( UPLO, 'Transpose', DIAG, NORMIN, N, AP,
$ WORK, SCALE, WORK( 2*N+1 ), INFO )
END IF
NORMIN = 'Y'
*
* Multiply by 1/SCALE if doing so will not cause overflow.
*
IF( SCALE.NE.ONE ) THEN
IX = ISAMAX( N, WORK, 1 )
XNORM = ABS( WORK( IX ) )
IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 20
CALL SRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / ANORM ) / AINVNM
END IF
*
20 CONTINUE
RETURN
*
* End of STPCON
*
END