*> \brief \b SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLARRK + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLARRK( N, IW, GL, GU, * D, E2, PIVMIN, RELTOL, W, WERR, INFO) * * .. Scalar Arguments .. * INTEGER INFO, IW, N * REAL PIVMIN, RELTOL, GL, GU, W, WERR * .. * .. Array Arguments .. * REAL D( * ), E2( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLARRK computes one eigenvalue of a symmetric tridiagonal *> matrix T to suitable accuracy. This is an auxiliary code to be *> called from SSTEMR. *> *> To avoid overflow, the matrix must be scaled so that its *> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest *> accuracy, it should not be much smaller than that. *> *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal *> Matrix", Report CS41, Computer Science Dept., Stanford *> University, July 21, 1966. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the tridiagonal matrix T. N >= 0. *> \endverbatim *> *> \param[in] IW *> \verbatim *> IW is INTEGER *> The index of the eigenvalues to be returned. *> \endverbatim *> *> \param[in] GL *> \verbatim *> GL is REAL *> \endverbatim *> *> \param[in] GU *> \verbatim *> GU is REAL *> An upper and a lower bound on the eigenvalue. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] E2 *> \verbatim *> E2 is REAL array, dimension (N-1) *> The (n-1) squared off-diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is REAL *> The minimum pivot allowed in the Sturm sequence for T. *> \endverbatim *> *> \param[in] RELTOL *> \verbatim *> RELTOL is REAL *> The minimum relative width of an interval. When an interval *> is narrower than RELTOL times the larger (in *> magnitude) endpoint, then it is considered to be *> sufficiently small, i.e., converged. Note: this should *> always be at least radix*machine epsilon. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is REAL *> \endverbatim *> *> \param[out] WERR *> \verbatim *> WERR is REAL *> The error bound on the corresponding eigenvalue approximation *> in W. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: Eigenvalue converged *> = -1: Eigenvalue did NOT converge *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> FUDGE REAL , default = 2 *> A "fudge factor" to widen the Gershgorin intervals. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup auxOTHERauxiliary * * ===================================================================== SUBROUTINE SLARRK( N, IW, GL, GU, $ D, E2, PIVMIN, RELTOL, W, WERR, INFO) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER INFO, IW, N REAL PIVMIN, RELTOL, GL, GU, W, WERR * .. * .. Array Arguments .. REAL D( * ), E2( * ) * .. * * ===================================================================== * * .. Parameters .. REAL FUDGE, HALF, TWO, ZERO PARAMETER ( HALF = 0.5E0, TWO = 2.0E0, $ FUDGE = TWO, ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER I, IT, ITMAX, NEGCNT REAL ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1, $ TMP2, TNORM * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX * .. * .. Executable Statements .. * * Get machine constants EPS = SLAMCH( 'P' ) TNORM = MAX( ABS( GL ), ABS( GU ) ) RTOLI = RELTOL ATOLI = FUDGE*TWO*PIVMIN ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) / $ LOG( TWO ) ) + 2 INFO = -1 LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN IT = 0 10 CONTINUE * * Check if interval converged or maximum number of iterations reached * TMP1 = ABS( RIGHT - LEFT ) TMP2 = MAX( ABS(RIGHT), ABS(LEFT) ) IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN INFO = 0 GOTO 30 ENDIF IF(IT.GT.ITMAX) $ GOTO 30 * * Count number of negative pivots for mid-point * IT = IT + 1 MID = HALF * (LEFT + RIGHT) NEGCNT = 0 TMP1 = D( 1 ) - MID IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN IF( TMP1.LE.ZERO ) $ NEGCNT = NEGCNT + 1 * DO 20 I = 2, N TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN IF( TMP1.LE.ZERO ) $ NEGCNT = NEGCNT + 1 20 CONTINUE IF(NEGCNT.GE.IW) THEN RIGHT = MID ELSE LEFT = MID ENDIF GOTO 10 30 CONTINUE * * Converged or maximum number of iterations reached * W = HALF * (LEFT + RIGHT) WERR = HALF * ABS( RIGHT - LEFT ) RETURN * * End of SLARRK * END