*> \brief \b SGBRFS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGBRFS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), IWORK( * )
* REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
* $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGBRFS improves the computed solution to a system of linear
*> equations when the coefficient matrix is banded, and provides
*> error bounds and backward error estimates for the solution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> The original band matrix A, stored in rows 1 to KL+KU+1.
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
*> \endverbatim
*>
*> \param[in] AFB
*> \verbatim
*> AFB is REAL array, dimension (LDAFB,N)
*> Details of the LU factorization of the band matrix A, as
*> computed by SGBTRF. U is stored as an upper triangular band
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
*> the multipliers used during the factorization are stored in
*> rows KL+KU+2 to 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDAFB
*> \verbatim
*> LDAFB is INTEGER
*> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from SGBTRF; for 1<=i<=N, row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> On entry, the solution matrix X, as computed by SGBTRS.
*> On exit, the improved solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*> FERR is REAL array, dimension (NRHS)
*> The estimated forward error bound for each solution vector
*> X(j) (the j-th column of the solution matrix X).
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
*> is an estimated upper bound for the magnitude of the largest
*> element in (X(j) - XTRUE) divided by the magnitude of the
*> largest element in X(j). The estimate is as reliable as
*> the estimate for RCOND, and is almost always a slight
*> overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector X(j) (i.e., the smallest relative change in
*> any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realGBcomputational
*
* =====================================================================
SUBROUTINE SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
$ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), IWORK( * )
REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
$ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
REAL TWO
PARAMETER ( TWO = 2.0E+0 )
REAL THREE
PARAMETER ( THREE = 3.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
CHARACTER TRANST
INTEGER COUNT, I, J, K, KASE, KK, NZ
REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SGBMV, SGBTRS, SLACN2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KL.LT.0 ) THEN
INFO = -3
ELSE IF( KU.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -5
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
INFO = -7
ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGBRFS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
DO 10 J = 1, NRHS
FERR( J ) = ZERO
BERR( J ) = ZERO
10 CONTINUE
RETURN
END IF
*
IF( NOTRAN ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
*
* NZ = maximum number of nonzero elements in each row of A, plus 1
*
NZ = MIN( KL+KU+2, N+1 )
EPS = SLAMCH( 'Epsilon' )
SAFMIN = SLAMCH( 'Safe minimum' )
SAFE1 = NZ*SAFMIN
SAFE2 = SAFE1 / EPS
*
* Do for each right hand side
*
DO 140 J = 1, NRHS
*
COUNT = 1
LSTRES = THREE
20 CONTINUE
*
* Loop until stopping criterion is satisfied.
*
* Compute residual R = B - op(A) * X,
* where op(A) = A, A**T, or A**H, depending on TRANS.
*
CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
CALL SGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
$ ONE, WORK( N+1 ), 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
*
* where abs(Z) is the componentwise absolute value of the matrix
* or vector Z. If the i-th component of the denominator is less
* than SAFE2, then SAFE1 is added to the i-th components of the
* numerator and denominator before dividing.
*
DO 30 I = 1, N
WORK( I ) = ABS( B( I, J ) )
30 CONTINUE
*
* Compute abs(op(A))*abs(X) + abs(B).
*
IF( NOTRAN ) THEN
DO 50 K = 1, N
KK = KU + 1 - K
XK = ABS( X( K, J ) )
DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
40 CONTINUE
50 CONTINUE
ELSE
DO 70 K = 1, N
S = ZERO
KK = KU + 1 - K
DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
60 CONTINUE
WORK( K ) = WORK( K ) + S
70 CONTINUE
END IF
S = ZERO
DO 80 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
ELSE
S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
$ ( WORK( I )+SAFE1 ) )
END IF
80 CONTINUE
BERR( J ) = S
*
* Test stopping criterion. Continue iterating if
* 1) The residual BERR(J) is larger than machine epsilon, and
* 2) BERR(J) decreased by at least a factor of 2 during the
* last iteration, and
* 3) At most ITMAX iterations tried.
*
IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
$ COUNT.LE.ITMAX ) THEN
*
* Update solution and try again.
*
CALL SGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
$ WORK( N+1 ), N, INFO )
CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
LSTRES = BERR( J )
COUNT = COUNT + 1
GO TO 20
END IF
*
* Bound error from formula
*
* norm(X - XTRUE) / norm(X) .le. FERR =
* norm( abs(inv(op(A)))*
* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(op(A)) is the inverse of op(A)
* abs(Z) is the componentwise absolute value of the matrix or
* vector Z
* NZ is the maximum number of nonzeros in any row of A, plus 1
* EPS is machine epsilon
*
* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
* is incremented by SAFE1 if the i-th component of
* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
*
* Use SLACN2 to estimate the infinity-norm of the matrix
* inv(op(A)) * diag(W),
* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
*
DO 90 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
ELSE
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
END IF
90 CONTINUE
*
KASE = 0
100 CONTINUE
CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
$ KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(op(A)**T).
*
CALL SGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
$ WORK( N+1 ), N, INFO )
DO 110 I = 1, N
WORK( N+I ) = WORK( N+I )*WORK( I )
110 CONTINUE
ELSE
*
* Multiply by inv(op(A))*diag(W).
*
DO 120 I = 1, N
WORK( N+I ) = WORK( N+I )*WORK( I )
120 CONTINUE
CALL SGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
$ WORK( N+1 ), N, INFO )
END IF
GO TO 100
END IF
*
* Normalize error.
*
LSTRES = ZERO
DO 130 I = 1, N
LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
130 CONTINUE
IF( LSTRES.NE.ZERO )
$ FERR( J ) = FERR( J ) / LSTRES
*
140 CONTINUE
*
RETURN
*
* End of SGBRFS
*
END