*> \brief \b DORM2L multiplies a general matrix by the orthogonal matrix from a QL factorization determined by sgeqlf (unblocked algorithm). * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DORM2L + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, * WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER SIDE, TRANS * INTEGER INFO, K, LDA, LDC, M, N * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DORM2L overwrites the general real m by n matrix C with *> *> Q * C if SIDE = 'L' and TRANS = 'N', or *> *> Q**T * C if SIDE = 'L' and TRANS = 'T', or *> *> C * Q if SIDE = 'R' and TRANS = 'N', or *> *> C * Q**T if SIDE = 'R' and TRANS = 'T', *> *> where Q is a real orthogonal matrix defined as the product of k *> elementary reflectors *> *> Q = H(k) . . . H(2) H(1) *> *> as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n *> if SIDE = 'R'. *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**T from the Left *> = 'R': apply Q or Q**T from the Right *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': apply Q (No transpose) *> = 'T': apply Q**T (Transpose) *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix C. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. *> If SIDE = 'L', M >= K >= 0; *> if SIDE = 'R', N >= K >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,K) *> The i-th column must contain the vector which defines the *> elementary reflector H(i), for i = 1,2,...,k, as returned by *> DGEQLF in the last k columns of its array argument A. *> A is modified by the routine but restored on exit. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> If SIDE = 'L', LDA >= max(1,M); *> if SIDE = 'R', LDA >= max(1,N). *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is DOUBLE PRECISION array, dimension (K) *> TAU(i) must contain the scalar factor of the elementary *> reflector H(i), as returned by DGEQLF. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is DOUBLE PRECISION array, dimension (LDC,N) *> On entry, the m by n matrix C. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension *> (N) if SIDE = 'L', *> (M) if SIDE = 'R' *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup doubleOTHERcomputational * * ===================================================================== SUBROUTINE DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, INFO ) * * -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, M, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LEFT, NOTRAN INTEGER I, I1, I2, I3, MI, NI, NQ DOUBLE PRECISION AII * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DLARF, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) * * NQ is the order of Q * IF( LEFT ) THEN NQ = M ELSE NQ = N END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DORM2L', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) $ RETURN * IF( ( LEFT .AND. NOTRAN ) .OR. ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) $ THEN I1 = 1 I2 = K I3 = 1 ELSE I1 = K I2 = 1 I3 = -1 END IF * IF( LEFT ) THEN NI = N ELSE MI = M END IF * DO 10 I = I1, I2, I3 IF( LEFT ) THEN * * H(i) is applied to C(1:m-k+i,1:n) * MI = M - K + I ELSE * * H(i) is applied to C(1:m,1:n-k+i) * NI = N - K + I END IF * * Apply H(i) * AII = A( NQ-K+I, I ) A( NQ-K+I, I ) = ONE CALL DLARF( SIDE, MI, NI, A( 1, I ), 1, TAU( I ), C, LDC, $ WORK ) A( NQ-K+I, I ) = AII 10 CONTINUE RETURN * * End of DORM2L * END