SUBROUTINE DGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, $ SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Zlatko Drmac of the University of Zagreb and -- * -- Kresimir Veselic of the Fernuniversitaet Hagen -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * This routine is also part of SIGMA (version 1.23, October 23. 2008.) * SIGMA is a library of algorithms for highly accurate algorithms for * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. * IMPLICIT NONE * .. * .. Scalar Arguments .. INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP DOUBLE PRECISION EPS, SFMIN, TOL CHARACTER*1 JOBV * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), SVA( N ), D( N ), V( LDV, * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * DGSVJ0 is called from DGESVJ as a pre-processor and that is its main * purpose. It applies Jacobi rotations in the same way as DGESVJ does, but * it does not check convergence (stopping criterion). Few tuning * parameters (marked by [TP]) are available for the implementer. * * Further Details * ~~~~~~~~~~~~~~~ * DGSVJ0 is used just to enable SGESVJ to call a simplified version of * itself to work on a submatrix of the original matrix. * * Contributors * ~~~~~~~~~~~~ * Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) * * Bugs, Examples and Comments * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Please report all bugs and send interesting test examples and comments to * drmac@math.hr. Thank you. * * Arguments * ========= * * JOBV (input) CHARACTER*1 * Specifies whether the output from this procedure is used * to compute the matrix V: * = 'V': the product of the Jacobi rotations is accumulated * by postmulyiplying the N-by-N array V. * (See the description of V.) * = 'A': the product of the Jacobi rotations is accumulated * by postmulyiplying the MV-by-N array V. * (See the descriptions of MV and V.) * = 'N': the Jacobi rotations are not accumulated. * * M (input) INTEGER * The number of rows of the input matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the input matrix A. * M >= N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, M-by-N matrix A, such that A*diag(D) represents * the input matrix. * On exit, * A_onexit * D_onexit represents the input matrix A*diag(D) * post-multiplied by a sequence of Jacobi rotations, where the * rotation threshold and the total number of sweeps are given in * TOL and NSWEEP, respectively. * (See the descriptions of D, TOL and NSWEEP.) * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * D (input/workspace/output) DOUBLE PRECISION array, dimension (N) * The array D accumulates the scaling factors from the fast scaled * Jacobi rotations. * On entry, A*diag(D) represents the input matrix. * On exit, A_onexit*diag(D_onexit) represents the input matrix * post-multiplied by a sequence of Jacobi rotations, where the * rotation threshold and the total number of sweeps are given in * TOL and NSWEEP, respectively. * (See the descriptions of A, TOL and NSWEEP.) * * SVA (input/workspace/output) DOUBLE PRECISION array, dimension (N) * On entry, SVA contains the Euclidean norms of the columns of * the matrix A*diag(D). * On exit, SVA contains the Euclidean norms of the columns of * the matrix onexit*diag(D_onexit). * * MV (input) INTEGER * If JOBV .EQ. 'A', then MV rows of V are post-multipled by a * sequence of Jacobi rotations. * If JOBV = 'N', then MV is not referenced. * * V (input/output) DOUBLE PRECISION array, dimension (LDV,N) * If JOBV .EQ. 'V' then N rows of V are post-multipled by a * sequence of Jacobi rotations. * If JOBV .EQ. 'A' then MV rows of V are post-multipled by a * sequence of Jacobi rotations. * If JOBV = 'N', then V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V, LDV >= 1. * If JOBV = 'V', LDV .GE. N. * If JOBV = 'A', LDV .GE. MV. * * EPS (input) DOUBLE PRECISION * EPS = DLAMCH('Epsilon') * * SFMIN (input) DOUBLE PRECISION * SFMIN = DLAMCH('Safe Minimum') * * TOL (input) DOUBLE PRECISION * TOL is the threshold for Jacobi rotations. For a pair * A(:,p), A(:,q) of pivot columns, the Jacobi rotation is * applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL. * * NSWEEP (input) INTEGER * NSWEEP is the number of sweeps of Jacobi rotations to be * performed. * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * LWORK is the dimension of WORK. LWORK .GE. M. * * INFO (output) INTEGER * = 0 : successful exit. * < 0 : if INFO = -i, then the i-th argument had an illegal value * * ===================================================================== * * .. Local Parameters .. DOUBLE PRECISION ZERO, HALF, ONE, TWO PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, $ TWO = 2.0D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG, $ BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS, $ ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA, $ THSIGN INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL, $ NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND LOGICAL APPLV, ROTOK, RSVEC * .. * .. Local Arrays .. DOUBLE PRECISION FASTR( 5 ) * .. * .. Intrinsic Functions .. INTRINSIC DABS, DMAX1, DBLE, MIN0, DSIGN, DSQRT * .. * .. External Functions .. DOUBLE PRECISION DDOT, DNRM2 INTEGER IDAMAX LOGICAL LSAME EXTERNAL IDAMAX, LSAME, DDOT, DNRM2 * .. * .. External Subroutines .. EXTERNAL DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP * .. * .. Executable Statements .. * * Test the input parameters. * APPLV = LSAME( JOBV, 'A' ) RSVEC = LSAME( JOBV, 'V' ) IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN INFO = -3 ELSE IF( LDA.LT.M ) THEN INFO = -5 ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN INFO = -8 ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN INFO = -10 ELSE IF( TOL.LE.EPS ) THEN INFO = -13 ELSE IF( NSWEEP.LT.0 ) THEN INFO = -14 ELSE IF( LWORK.LT.M ) THEN INFO = -16 ELSE INFO = 0 END IF * * #:( IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGSVJ0', -INFO ) RETURN END IF * IF( RSVEC ) THEN MVL = N ELSE IF( APPLV ) THEN MVL = MV END IF RSVEC = RSVEC .OR. APPLV ROOTEPS = DSQRT( EPS ) ROOTSFMIN = DSQRT( SFMIN ) SMALL = SFMIN / EPS BIG = ONE / SFMIN ROOTBIG = ONE / ROOTSFMIN BIGTHETA = ONE / ROOTEPS ROOTTOL = DSQRT( TOL ) * * -#- Row-cyclic Jacobi SVD algorithm with column pivoting -#- * EMPTSW = ( N*( N-1 ) ) / 2 NOTROT = 0 FASTR( 1 ) = ZERO * * -#- Row-cyclic pivot strategy with de Rijk's pivoting -#- * SWBAND = 0 *[TP] SWBAND is a tuning parameter. It is meaningful and effective * if SGESVJ is used as a computational routine in the preconditioned * Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure * ...... KBL = MIN0( 8, N ) *[TP] KBL is a tuning parameter that defines the tile size in the * tiling of the p-q loops of pivot pairs. In general, an optimal * value of KBL depends on the matrix dimensions and on the * parameters of the computer's memory. * NBL = N / KBL IF( ( NBL*KBL ).NE.N )NBL = NBL + 1 BLSKIP = ( KBL**2 ) + 1 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. ROWSKIP = MIN0( 5, KBL ) *[TP] ROWSKIP is a tuning parameter. LKAHEAD = 1 *[TP] LKAHEAD is a tuning parameter. SWBAND = 0 PSKIPPED = 0 * DO 1993 i = 1, NSWEEP * .. go go go ... * MXAAPQ = ZERO MXSINJ = ZERO ISWROT = 0 * NOTROT = 0 PSKIPPED = 0 * DO 2000 ibr = 1, NBL igl = ( ibr-1 )*KBL + 1 * DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr ) * igl = igl + ir1*KBL * DO 2001 p = igl, MIN0( igl+KBL-1, N-1 ) * .. de Rijk's pivoting q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1 IF( p.NE.q ) THEN CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 ) IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, $ V( 1, q ), 1 ) TEMP1 = SVA( p ) SVA( p ) = SVA( q ) SVA( q ) = TEMP1 TEMP1 = D( p ) D( p ) = D( q ) D( q ) = TEMP1 END IF * IF( ir1.EQ.0 ) THEN * * Column norms are periodically updated by explicit * norm computation. * Caveat: * Some BLAS implementations compute DNRM2(M,A(1,p),1) * as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may result in * overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and * undeflow for ||A(:,p)||_2 < DSQRT(underflow_threshold). * Hence, DNRM2 cannot be trusted, not even in the case when * the true norm is far from the under(over)flow boundaries. * If properly implemented DNRM2 is available, the IF-THEN-ELSE * below should read "AAPP = DNRM2( M, A(1,p), 1 ) * D(p)". * IF( ( SVA( p ).LT.ROOTBIG ) .AND. $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN SVA( p ) = DNRM2( M, A( 1, p ), 1 )*D( p ) ELSE TEMP1 = ZERO AAPP = ONE CALL DLASSQ( M, A( 1, p ), 1, TEMP1, AAPP ) SVA( p ) = TEMP1*DSQRT( AAPP )*D( p ) END IF AAPP = SVA( p ) ELSE AAPP = SVA( p ) END IF * IF( AAPP.GT.ZERO ) THEN * PSKIPPED = 0 * DO 2002 q = p + 1, MIN0( igl+KBL-1, N ) * AAQQ = SVA( q ) IF( AAQQ.GT.ZERO ) THEN * AAPP0 = AAPP IF( AAQQ.GE.ONE ) THEN ROTOK = ( SMALL*AAPP ).LE.AAQQ IF( AAPP.LT.( BIG / AAQQ ) ) THEN AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*D( p )*D( q ) / AAQQ ) $ / AAPP ELSE CALL DCOPY( M, A( 1, p ), 1, WORK, 1 ) CALL DLASCL( 'G', 0, 0, AAPP, D( p ), $ M, 1, WORK, LDA, IERR ) AAPQ = DDOT( M, WORK, 1, A( 1, q ), $ 1 )*D( q ) / AAQQ END IF ELSE ROTOK = AAPP.LE.( AAQQ / SMALL ) IF( AAPP.GT.( SMALL / AAQQ ) ) THEN AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*D( p )*D( q ) / AAQQ ) $ / AAPP ELSE CALL DCOPY( M, A( 1, q ), 1, WORK, 1 ) CALL DLASCL( 'G', 0, 0, AAQQ, D( q ), $ M, 1, WORK, LDA, IERR ) AAPQ = DDOT( M, WORK, 1, A( 1, p ), $ 1 )*D( p ) / AAPP END IF END IF * MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * IF( DABS( AAPQ ).GT.TOL ) THEN * * .. rotate * ROTATED = ROTATED + ONE * IF( ir1.EQ.0 ) THEN NOTROT = 0 PSKIPPED = 0 ISWROT = ISWROT + 1 END IF * IF( ROTOK ) THEN * AQOAP = AAQQ / AAPP APOAQ = AAPP / AAQQ THETA = -HALF*DABS( AQOAP-APOAQ )/AAPQ * IF( DABS( THETA ).GT.BIGTHETA ) THEN * T = HALF / THETA FASTR( 3 ) = T*D( p ) / D( q ) FASTR( 4 ) = -T*D( q ) / D( p ) CALL DROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, FASTR ) IF( RSVEC )CALL DROTM( MVL, $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*DSQRT( DMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) MXSINJ = DMAX1( MXSINJ, DABS( T ) ) * ELSE * * .. choose correct signum for THETA and rotate * THSIGN = -DSIGN( ONE, AAPQ ) T = ONE / ( THETA+THSIGN* $ DSQRT( ONE+THETA*THETA ) ) CS = DSQRT( ONE / ( ONE+T*T ) ) SN = T*CS * MXSINJ = DMAX1( MXSINJ, DABS( SN ) ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*DSQRT( DMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = D( p ) / D( q ) AQOAP = D( q ) / D( p ) IF( D( p ).GE.ONE ) THEN IF( D( q ).GE.ONE ) THEN FASTR( 3 ) = T*APOAQ FASTR( 4 ) = -T*AQOAP D( p ) = D( p )*CS D( q ) = D( q )*CS CALL DROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, $ FASTR ) IF( RSVEC )CALL DROTM( MVL, $ V( 1, p ), 1, V( 1, q ), $ 1, FASTR ) ELSE CALL DAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL DAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) D( p ) = D( p )*CS D( q ) = D( q ) / CS IF( RSVEC ) THEN CALL DAXPY( MVL, -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL DAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF END IF ELSE IF( D( q ).GE.ONE ) THEN CALL DAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL DAXPY( M, -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) D( p ) = D( p ) / CS D( q ) = D( q )*CS IF( RSVEC ) THEN CALL DAXPY( MVL, T*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) CALL DAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF ELSE IF( D( p ).GE.D( q ) ) THEN CALL DAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL DAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) D( p ) = D( p )*CS D( q ) = D( q ) / CS IF( RSVEC ) THEN CALL DAXPY( MVL, $ -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL DAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF ELSE CALL DAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL DAXPY( M, $ -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) D( p ) = D( p ) / CS D( q ) = D( q )*CS IF( RSVEC ) THEN CALL DAXPY( MVL, $ T*APOAQ, V( 1, p ), $ 1, V( 1, q ), 1 ) CALL DAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF END IF END IF END IF END IF * ELSE * .. have to use modified Gram-Schmidt like transformation CALL DCOPY( M, A( 1, p ), 1, WORK, 1 ) CALL DLASCL( 'G', 0, 0, AAPP, ONE, M, $ 1, WORK, LDA, IERR ) CALL DLASCL( 'G', 0, 0, AAQQ, ONE, M, $ 1, A( 1, q ), LDA, IERR ) TEMP1 = -AAPQ*D( p ) / D( q ) CALL DAXPY( M, TEMP1, WORK, 1, $ A( 1, q ), 1 ) CALL DLASCL( 'G', 0, 0, ONE, AAQQ, M, $ 1, A( 1, q ), LDA, IERR ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = DMAX1( MXSINJ, SFMIN ) END IF * END IF ROTOK THEN ... ELSE * * In the case of cancellation in updating SVA(q), SVA(p) * recompute SVA(q), SVA(p). IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS ) $ THEN IF( ( AAQQ.LT.ROOTBIG ) .AND. $ ( AAQQ.GT.ROOTSFMIN ) ) THEN SVA( q ) = DNRM2( M, A( 1, q ), 1 )* $ D( q ) ELSE T = ZERO AAQQ = ONE CALL DLASSQ( M, A( 1, q ), 1, T, $ AAQQ ) SVA( q ) = T*DSQRT( AAQQ )*D( q ) END IF END IF IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN IF( ( AAPP.LT.ROOTBIG ) .AND. $ ( AAPP.GT.ROOTSFMIN ) ) THEN AAPP = DNRM2( M, A( 1, p ), 1 )* $ D( p ) ELSE T = ZERO AAPP = ONE CALL DLASSQ( M, A( 1, p ), 1, T, $ AAPP ) AAPP = T*DSQRT( AAPP )*D( p ) END IF SVA( p ) = AAPP END IF * ELSE * A(:,p) and A(:,q) already numerically orthogonal IF( ir1.EQ.0 )NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 END IF ELSE * A(:,q) is zero column IF( ir1.EQ.0 )NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 END IF * IF( ( i.LE.SWBAND ) .AND. $ ( PSKIPPED.GT.ROWSKIP ) ) THEN IF( ir1.EQ.0 )AAPP = -AAPP NOTROT = 0 GO TO 2103 END IF * 2002 CONTINUE * END q-LOOP * 2103 CONTINUE * bailed out of q-loop SVA( p ) = AAPP ELSE SVA( p ) = AAPP IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) ) $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p END IF * 2001 CONTINUE * end of the p-loop * end of doing the block ( ibr, ibr ) 1002 CONTINUE * end of ir1-loop * *........................................................ * ... go to the off diagonal blocks * igl = ( ibr-1 )*KBL + 1 * DO 2010 jbc = ibr + 1, NBL * jgl = ( jbc-1 )*KBL + 1 * * doing the block at ( ibr, jbc ) * IJBLSK = 0 DO 2100 p = igl, MIN0( igl+KBL-1, N ) * AAPP = SVA( p ) * IF( AAPP.GT.ZERO ) THEN * PSKIPPED = 0 * DO 2200 q = jgl, MIN0( jgl+KBL-1, N ) * AAQQ = SVA( q ) * IF( AAQQ.GT.ZERO ) THEN AAPP0 = AAPP * * -#- M x 2 Jacobi SVD -#- * * -#- Safe Gram matrix computation -#- * IF( AAQQ.GE.ONE ) THEN IF( AAPP.GE.AAQQ ) THEN ROTOK = ( SMALL*AAPP ).LE.AAQQ ELSE ROTOK = ( SMALL*AAQQ ).LE.AAPP END IF IF( AAPP.LT.( BIG / AAQQ ) ) THEN AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*D( p )*D( q ) / AAQQ ) $ / AAPP ELSE CALL DCOPY( M, A( 1, p ), 1, WORK, 1 ) CALL DLASCL( 'G', 0, 0, AAPP, D( p ), $ M, 1, WORK, LDA, IERR ) AAPQ = DDOT( M, WORK, 1, A( 1, q ), $ 1 )*D( q ) / AAQQ END IF ELSE IF( AAPP.GE.AAQQ ) THEN ROTOK = AAPP.LE.( AAQQ / SMALL ) ELSE ROTOK = AAQQ.LE.( AAPP / SMALL ) END IF IF( AAPP.GT.( SMALL / AAQQ ) ) THEN AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*D( p )*D( q ) / AAQQ ) $ / AAPP ELSE CALL DCOPY( M, A( 1, q ), 1, WORK, 1 ) CALL DLASCL( 'G', 0, 0, AAQQ, D( q ), $ M, 1, WORK, LDA, IERR ) AAPQ = DDOT( M, WORK, 1, A( 1, p ), $ 1 )*D( p ) / AAPP END IF END IF * MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * IF( DABS( AAPQ ).GT.TOL ) THEN NOTROT = 0 * ROTATED = ROTATED + 1 PSKIPPED = 0 ISWROT = ISWROT + 1 * IF( ROTOK ) THEN * AQOAP = AAQQ / AAPP APOAQ = AAPP / AAQQ THETA = -HALF*DABS( AQOAP-APOAQ )/AAPQ IF( AAQQ.GT.AAPP0 )THETA = -THETA * IF( DABS( THETA ).GT.BIGTHETA ) THEN T = HALF / THETA FASTR( 3 ) = T*D( p ) / D( q ) FASTR( 4 ) = -T*D( q ) / D( p ) CALL DROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, FASTR ) IF( RSVEC )CALL DROTM( MVL, $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*DSQRT( DMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) MXSINJ = DMAX1( MXSINJ, DABS( T ) ) ELSE * * .. choose correct signum for THETA and rotate * THSIGN = -DSIGN( ONE, AAPQ ) IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN T = ONE / ( THETA+THSIGN* $ DSQRT( ONE+THETA*THETA ) ) CS = DSQRT( ONE / ( ONE+T*T ) ) SN = T*CS MXSINJ = DMAX1( MXSINJ, DABS( SN ) ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*DSQRT( DMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = D( p ) / D( q ) AQOAP = D( q ) / D( p ) IF( D( p ).GE.ONE ) THEN * IF( D( q ).GE.ONE ) THEN FASTR( 3 ) = T*APOAQ FASTR( 4 ) = -T*AQOAP D( p ) = D( p )*CS D( q ) = D( q )*CS CALL DROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, $ FASTR ) IF( RSVEC )CALL DROTM( MVL, $ V( 1, p ), 1, V( 1, q ), $ 1, FASTR ) ELSE CALL DAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL DAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) IF( RSVEC ) THEN CALL DAXPY( MVL, -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL DAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF D( p ) = D( p )*CS D( q ) = D( q ) / CS END IF ELSE IF( D( q ).GE.ONE ) THEN CALL DAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL DAXPY( M, -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) IF( RSVEC ) THEN CALL DAXPY( MVL, T*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) CALL DAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF D( p ) = D( p ) / CS D( q ) = D( q )*CS ELSE IF( D( p ).GE.D( q ) ) THEN CALL DAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL DAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) D( p ) = D( p )*CS D( q ) = D( q ) / CS IF( RSVEC ) THEN CALL DAXPY( MVL, $ -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL DAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF ELSE CALL DAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL DAXPY( M, $ -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) D( p ) = D( p ) / CS D( q ) = D( q )*CS IF( RSVEC ) THEN CALL DAXPY( MVL, $ T*APOAQ, V( 1, p ), $ 1, V( 1, q ), 1 ) CALL DAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF END IF END IF END IF END IF * ELSE IF( AAPP.GT.AAQQ ) THEN CALL DCOPY( M, A( 1, p ), 1, WORK, $ 1 ) CALL DLASCL( 'G', 0, 0, AAPP, ONE, $ M, 1, WORK, LDA, IERR ) CALL DLASCL( 'G', 0, 0, AAQQ, ONE, $ M, 1, A( 1, q ), LDA, $ IERR ) TEMP1 = -AAPQ*D( p ) / D( q ) CALL DAXPY( M, TEMP1, WORK, 1, $ A( 1, q ), 1 ) CALL DLASCL( 'G', 0, 0, ONE, AAQQ, $ M, 1, A( 1, q ), LDA, $ IERR ) SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = DMAX1( MXSINJ, SFMIN ) ELSE CALL DCOPY( M, A( 1, q ), 1, WORK, $ 1 ) CALL DLASCL( 'G', 0, 0, AAQQ, ONE, $ M, 1, WORK, LDA, IERR ) CALL DLASCL( 'G', 0, 0, AAPP, ONE, $ M, 1, A( 1, p ), LDA, $ IERR ) TEMP1 = -AAPQ*D( q ) / D( p ) CALL DAXPY( M, TEMP1, WORK, 1, $ A( 1, p ), 1 ) CALL DLASCL( 'G', 0, 0, ONE, AAPP, $ M, 1, A( 1, p ), LDA, $ IERR ) SVA( p ) = AAPP*DSQRT( DMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = DMAX1( MXSINJ, SFMIN ) END IF END IF * END IF ROTOK THEN ... ELSE * * In the case of cancellation in updating SVA(q) * .. recompute SVA(q) IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS ) $ THEN IF( ( AAQQ.LT.ROOTBIG ) .AND. $ ( AAQQ.GT.ROOTSFMIN ) ) THEN SVA( q ) = DNRM2( M, A( 1, q ), 1 )* $ D( q ) ELSE T = ZERO AAQQ = ONE CALL DLASSQ( M, A( 1, q ), 1, T, $ AAQQ ) SVA( q ) = T*DSQRT( AAQQ )*D( q ) END IF END IF IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN IF( ( AAPP.LT.ROOTBIG ) .AND. $ ( AAPP.GT.ROOTSFMIN ) ) THEN AAPP = DNRM2( M, A( 1, p ), 1 )* $ D( p ) ELSE T = ZERO AAPP = ONE CALL DLASSQ( M, A( 1, p ), 1, T, $ AAPP ) AAPP = T*DSQRT( AAPP )*D( p ) END IF SVA( p ) = AAPP END IF * end of OK rotation ELSE NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 IJBLSK = IJBLSK + 1 END IF ELSE NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 IJBLSK = IJBLSK + 1 END IF * IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) ) $ THEN SVA( p ) = AAPP NOTROT = 0 GO TO 2011 END IF IF( ( i.LE.SWBAND ) .AND. $ ( PSKIPPED.GT.ROWSKIP ) ) THEN AAPP = -AAPP NOTROT = 0 GO TO 2203 END IF * 2200 CONTINUE * end of the q-loop 2203 CONTINUE * SVA( p ) = AAPP * ELSE IF( AAPP.EQ.ZERO )NOTROT = NOTROT + $ MIN0( jgl+KBL-1, N ) - jgl + 1 IF( AAPP.LT.ZERO )NOTROT = 0 END IF 2100 CONTINUE * end of the p-loop 2010 CONTINUE * end of the jbc-loop 2011 CONTINUE *2011 bailed out of the jbc-loop DO 2012 p = igl, MIN0( igl+KBL-1, N ) SVA( p ) = DABS( SVA( p ) ) 2012 CONTINUE * 2000 CONTINUE *2000 :: end of the ibr-loop * * .. update SVA(N) IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) ) $ THEN SVA( N ) = DNRM2( M, A( 1, N ), 1 )*D( N ) ELSE T = ZERO AAPP = ONE CALL DLASSQ( M, A( 1, N ), 1, T, AAPP ) SVA( N ) = T*DSQRT( AAPP )*D( N ) END IF * * Additional steering devices * IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR. $ ( ISWROT.LE.N ) ) )SWBAND = i * IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.DBLE( N )*TOL ) .AND. $ ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN GO TO 1994 END IF * IF( NOTROT.GE.EMPTSW )GO TO 1994 1993 CONTINUE * end i=1:NSWEEP loop * #:) Reaching this point means that the procedure has comleted the given * number of iterations. INFO = NSWEEP - 1 GO TO 1995 1994 CONTINUE * #:) Reaching this point means that during the i-th sweep all pivots were * below the given tolerance, causing early exit. * INFO = 0 * #:) INFO = 0 confirms successful iterations. 1995 CONTINUE * * Sort the vector D. DO 5991 p = 1, N - 1 q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1 IF( p.NE.q ) THEN TEMP1 = SVA( p ) SVA( p ) = SVA( q ) SVA( q ) = TEMP1 TEMP1 = D( p ) D( p ) = D( q ) D( q ) = TEMP1 CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 ) IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 ) END IF 5991 CONTINUE * RETURN * .. * .. END OF DGSVJ0 * .. END