*> \brief \b CTGSYL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download CTGSYL + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*
* Definition
* ==========
*
* SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
* LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
* IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
* $ LWORK, M, N
* REAL DIF, SCALE
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
* $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
* $ WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CTGSYL solves the generalized Sylvester equation:
*>
*> A * R - L * B = scale * C (1)
*> D * R - L * E = scale * F
*>
*> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
*> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
*> respectively, with complex entries. A, B, D and E are upper
*> triangular (i.e., (A,D) and (B,E) in generalized Schur form).
*>
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
*> is an output scaling factor chosen to avoid overflow.
*>
*> In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
*> is defined as
*>
*> Z = [ kron(In, A) -kron(B**H, Im) ] (2)
*> [ kron(In, D) -kron(E**H, Im) ],
*>
*> Here Ix is the identity matrix of size x and X**H is the conjugate
*> transpose of X. Kron(X, Y) is the Kronecker product between the
*> matrices X and Y.
*>
*> If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
*> is solved for, which is equivalent to solve for R and L in
*>
*> A**H * R + D**H * L = scale * C (3)
*> R * B**H + L * E**H = scale * -F
*>
*> This case (TRANS = 'C') is used to compute an one-norm-based estimate
*> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
*> and (B,E), using CLACON.
*>
*> If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of
*> Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
*> reciprocal of the smallest singular value of Z.
*>
*> This is a level-3 BLAS algorithm.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': solve the generalized sylvester equation (1).
*> = 'C': solve the "conjugate transposed" system (3).
*> \endverbatim
*>
*> \param[in] IJOB
*> \verbatim
*> IJOB is INTEGER
*> Specifies what kind of functionality to be performed.
*> =0: solve (1) only.
*> =1: The functionality of 0 and 3.
*> =2: The functionality of 0 and 4.
*> =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> (look ahead strategy is used).
*> =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> (CGECON on sub-systems is used).
*> Not referenced if TRANS = 'C'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The order of the matrices A and D, and the row dimension of
*> the matrices C, F, R and L.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices B and E, and the column dimension
*> of the matrices C, F, R and L.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, M)
*> The upper triangular matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1, M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, N)
*> The upper triangular matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC, N)
*> On entry, C contains the right-hand-side of the first matrix
*> equation in (1) or (3).
*> On exit, if IJOB = 0, 1 or 2, C has been overwritten by
*> the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
*> the solution achieved during the computation of the
*> Dif-estimate.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1, M).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX array, dimension (LDD, M)
*> The upper triangular matrix D.
*> \endverbatim
*>
*> \param[in] LDD
*> \verbatim
*> LDD is INTEGER
*> The leading dimension of the array D. LDD >= max(1, M).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (LDE, N)
*> The upper triangular matrix E.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of the array E. LDE >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] F
*> \verbatim
*> F is COMPLEX array, dimension (LDF, N)
*> On entry, F contains the right-hand-side of the second matrix
*> equation in (1) or (3).
*> On exit, if IJOB = 0, 1 or 2, F has been overwritten by
*> the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
*> the solution achieved during the computation of the
*> Dif-estimate.
*> \endverbatim
*>
*> \param[in] LDF
*> \verbatim
*> LDF is INTEGER
*> The leading dimension of the array F. LDF >= max(1, M).
*> \endverbatim
*>
*> \param[out] DIF
*> \verbatim
*> DIF is REAL
*> On exit DIF is the reciprocal of a lower bound of the
*> reciprocal of the Dif-function, i.e. DIF is an upper bound of
*> Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
*> IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is REAL
*> On exit SCALE is the scaling factor in (1) or (3).
*> If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
*> to a slightly perturbed system but the input matrices A, B,
*> D and E have not been changed. If SCALE = 0, R and L will
*> hold the solutions to the homogenious system with C = F = 0.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK > = 1.
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
*> \endverbatim
*> \verbatim
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M+N+2)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> =0: successful exit
*> <0: If INFO = -i, the i-th argument had an illegal value.
*> >0: (A, D) and (B, E) have common or very close
*> eigenvalues.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexSYcomputational
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*> Umea University, S-901 87 Umea, Sweden.
*>
*> [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*> for Solving the Generalized Sylvester Equation and Estimating the
*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*> Department of Computing Science, Umea University, S-901 87 Umea,
*> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
*> No 1, 1996.
*>
*> [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
*> Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
*> Appl., 15(4):1045-1060, 1994.
*>
*> [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
*> Condition Estimators for Solving the Generalized Sylvester
*> Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
*> July 1989, pp 745-751.
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
$ IWORK, INFO )
*
* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
$ LWORK, M, N
REAL DIF, SCALE
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), E( LDE, * ), F( LDF, * ),
$ WORK( * )
* ..
*
* =====================================================================
* Replaced various illegal calls to CCOPY by calls to CLASET.
* Sven Hammarling, 1/5/02.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO
PARAMETER ( CZERO = (0.0E+0, 0.0E+0) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOTRAN
INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
$ LINFO, LWMIN, MB, NB, P, PQ, Q
REAL DSCALE, DSUM, SCALE2, SCALOC
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CLACPY, CLASET, CSCAL, CTGSY2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Decode and test input parameters
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( NOTRAN ) THEN
IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
INFO = -2
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( M.LE.0 ) THEN
INFO = -3
ELSE IF( N.LE.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
INFO = -12
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -16
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
IF( NOTRAN ) THEN
IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
LWMIN = MAX( 1, 2*M*N )
ELSE
LWMIN = 1
END IF
ELSE
LWMIN = 1
END IF
WORK( 1 ) = LWMIN
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CTGSYL', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
SCALE = 1
IF( NOTRAN ) THEN
IF( IJOB.NE.0 ) THEN
DIF = 0
END IF
END IF
RETURN
END IF
*
* Determine optimal block sizes MB and NB
*
MB = ILAENV( 2, 'CTGSYL', TRANS, M, N, -1, -1 )
NB = ILAENV( 5, 'CTGSYL', TRANS, M, N, -1, -1 )
*
ISOLVE = 1
IFUNC = 0
IF( NOTRAN ) THEN
IF( IJOB.GE.3 ) THEN
IFUNC = IJOB - 2
CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
ISOLVE = 2
END IF
END IF
*
IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
$ THEN
*
* Use unblocked Level 2 solver
*
DO 30 IROUND = 1, ISOLVE
*
SCALE = ONE
DSCALE = ZERO
DSUM = ONE
PQ = M*N
CALL CTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
$ INFO )
IF( DSCALE.NE.ZERO ) THEN
IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
ELSE
DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
END IF
END IF
IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
IF( NOTRAN ) THEN
IFUNC = IJOB
END IF
SCALE2 = SCALE
CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
SCALE = SCALE2
END IF
30 CONTINUE
*
RETURN
*
END IF
*
* Determine block structure of A
*
P = 0
I = 1
40 CONTINUE
IF( I.GT.M )
$ GO TO 50
P = P + 1
IWORK( P ) = I
I = I + MB
IF( I.GE.M )
$ GO TO 50
GO TO 40
50 CONTINUE
IWORK( P+1 ) = M + 1
IF( IWORK( P ).EQ.IWORK( P+1 ) )
$ P = P - 1
*
* Determine block structure of B
*
Q = P + 1
J = 1
60 CONTINUE
IF( J.GT.N )
$ GO TO 70
*
Q = Q + 1
IWORK( Q ) = J
J = J + NB
IF( J.GE.N )
$ GO TO 70
GO TO 60
*
70 CONTINUE
IWORK( Q+1 ) = N + 1
IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
$ Q = Q - 1
*
IF( NOTRAN ) THEN
DO 150 IROUND = 1, ISOLVE
*
* Solve (I, J) - subsystem
* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
*
PQ = 0
SCALE = ONE
DSCALE = ZERO
DSUM = ONE
DO 130 J = P + 2, Q
JS = IWORK( J )
JE = IWORK( J+1 ) - 1
NB = JE - JS + 1
DO 120 I = P, 1, -1
IS = IWORK( I )
IE = IWORK( I+1 ) - 1
MB = IE - IS + 1
CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
$ B( JS, JS ), LDB, C( IS, JS ), LDC,
$ D( IS, IS ), LDD, E( JS, JS ), LDE,
$ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
$ LINFO )
IF( LINFO.GT.0 )
$ INFO = LINFO
PQ = PQ + MB*NB
IF( SCALOC.NE.ONE ) THEN
DO 80 K = 1, JS - 1
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
$ 1 )
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
$ 1 )
80 CONTINUE
DO 90 K = JS, JE
CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
$ C( 1, K ), 1 )
CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
$ F( 1, K ), 1 )
90 CONTINUE
DO 100 K = JS, JE
CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
$ C( IE+1, K ), 1 )
CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
$ F( IE+1, K ), 1 )
100 CONTINUE
DO 110 K = JE + 1, N
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
$ 1 )
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
$ 1 )
110 CONTINUE
SCALE = SCALE*SCALOC
END IF
*
* Substitute R(I,J) and L(I,J) into remaining equation.
*
IF( I.GT.1 ) THEN
CALL CGEMM( 'N', 'N', IS-1, NB, MB,
$ CMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
$ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
$ C( 1, JS ), LDC )
CALL CGEMM( 'N', 'N', IS-1, NB, MB,
$ CMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
$ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
$ F( 1, JS ), LDF )
END IF
IF( J.LT.Q ) THEN
CALL CGEMM( 'N', 'N', MB, N-JE, NB,
$ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
$ B( JS, JE+1 ), LDB, CMPLX( ONE, ZERO ),
$ C( IS, JE+1 ), LDC )
CALL CGEMM( 'N', 'N', MB, N-JE, NB,
$ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
$ E( JS, JE+1 ), LDE, CMPLX( ONE, ZERO ),
$ F( IS, JE+1 ), LDF )
END IF
120 CONTINUE
130 CONTINUE
IF( DSCALE.NE.ZERO ) THEN
IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
ELSE
DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
END IF
END IF
IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
IF( NOTRAN ) THEN
IFUNC = IJOB
END IF
SCALE2 = SCALE
CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
SCALE = SCALE2
END IF
150 CONTINUE
ELSE
*
* Solve transposed (I, J)-subsystem
* A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
* R(I, J) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
* for I = 1,2,..., P; J = Q, Q-1,..., 1
*
SCALE = ONE
DO 210 I = 1, P
IS = IWORK( I )
IE = IWORK( I+1 ) - 1
MB = IE - IS + 1
DO 200 J = Q, P + 2, -1
JS = IWORK( J )
JE = IWORK( J+1 ) - 1
NB = JE - JS + 1
CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
$ B( JS, JS ), LDB, C( IS, JS ), LDC,
$ D( IS, IS ), LDD, E( JS, JS ), LDE,
$ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
$ LINFO )
IF( LINFO.GT.0 )
$ INFO = LINFO
IF( SCALOC.NE.ONE ) THEN
DO 160 K = 1, JS - 1
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
$ 1 )
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
$ 1 )
160 CONTINUE
DO 170 K = JS, JE
CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), C( 1, K ),
$ 1 )
CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), F( 1, K ),
$ 1 )
170 CONTINUE
DO 180 K = JS, JE
CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
$ C( IE+1, K ), 1 )
CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
$ F( IE+1, K ), 1 )
180 CONTINUE
DO 190 K = JE + 1, N
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
$ 1 )
CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
$ 1 )
190 CONTINUE
SCALE = SCALE*SCALOC
END IF
*
* Substitute R(I,J) and L(I,J) into remaining equation.
*
IF( J.GT.P+2 ) THEN
CALL CGEMM( 'N', 'C', MB, JS-1, NB,
$ CMPLX( ONE, ZERO ), C( IS, JS ), LDC,
$ B( 1, JS ), LDB, CMPLX( ONE, ZERO ),
$ F( IS, 1 ), LDF )
CALL CGEMM( 'N', 'C', MB, JS-1, NB,
$ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
$ E( 1, JS ), LDE, CMPLX( ONE, ZERO ),
$ F( IS, 1 ), LDF )
END IF
IF( I.LT.P ) THEN
CALL CGEMM( 'C', 'N', M-IE, NB, MB,
$ CMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
$ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
$ C( IE+1, JS ), LDC )
CALL CGEMM( 'C', 'N', M-IE, NB, MB,
$ CMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
$ F( IS, JS ), LDF, CMPLX( ONE, ZERO ),
$ C( IE+1, JS ), LDC )
END IF
200 CONTINUE
210 CONTINUE
END IF
*
WORK( 1 ) = LWMIN
*
RETURN
*
* End of CTGSYL
*
END