*> \brief \b CPBCON
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPBCON + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK,
* RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, KD, LDAB, N
* REAL ANORM, RCOND
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX AB( LDAB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPBCON estimates the reciprocal of the condition number (in the
*> 1-norm) of a complex Hermitian positive definite band matrix using
*> the Cholesky factorization A = U**H*U or A = L*L**H computed by
*> CPBTRF.
*>
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangular factor stored in AB;
*> = 'L': Lower triangular factor stored in AB.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of superdiagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is COMPLEX array, dimension (LDAB,N)
*> The triangular factor U or L from the Cholesky factorization
*> A = U**H*U or A = L*L**H of the band matrix A, stored in the
*> first KD+1 rows of the array. The j-th column of U or L is
*> stored in the j-th column of the array AB as follows:
*> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*> ANORM is REAL
*> The 1-norm (or infinity-norm) of the Hermitian band matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of the matrix A,
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
*> estimate of the 1-norm of inv(A) computed in this routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK,
$ RWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, KD, LDAB, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX AB( LDAB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER NORMIN
INTEGER IX, KASE
REAL AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
COMPLEX ZDUM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL LSAME, ICAMAX, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLACN2, CLATBS, CSRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KD.LT.0 ) THEN
INFO = -3
ELSE IF( LDAB.LT.KD+1 ) THEN
INFO = -5
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPBCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
*
* Estimate the 1-norm of the inverse.
*
KASE = 0
NORMIN = 'N'
10 CONTINUE
CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( UPPER ) THEN
*
* Multiply by inv(U**H).
*
CALL CLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, KD, AB, LDAB, WORK, SCALEL, RWORK,
$ INFO )
NORMIN = 'Y'
*
* Multiply by inv(U).
*
CALL CLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ KD, AB, LDAB, WORK, SCALEU, RWORK, INFO )
ELSE
*
* Multiply by inv(L).
*
CALL CLATBS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N,
$ KD, AB, LDAB, WORK, SCALEL, RWORK, INFO )
NORMIN = 'Y'
*
* Multiply by inv(L**H).
*
CALL CLATBS( 'Lower', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, KD, AB, LDAB, WORK, SCALEU, RWORK,
$ INFO )
END IF
*
* Multiply by 1/SCALE if doing so will not cause overflow.
*
SCALE = SCALEL*SCALEU
IF( SCALE.NE.ONE ) THEN
IX = ICAMAX( N, WORK, 1 )
IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 20
CALL CSRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
20 CONTINUE
*
RETURN
*
* End of CPBCON
*
END