*> \brief \b CLARSCL2 performs reciprocal diagonal scaling on a vector.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARSCL2 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLARSCL2 ( M, N, D, X, LDX )
*
* .. Scalar Arguments ..
* INTEGER M, N, LDX
* ..
* .. Array Arguments ..
* COMPLEX X( LDX, * )
* REAL D( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARSCL2 performs a reciprocal diagonal scaling on an vector:
*> x <-- inv(D) * x
*> where the REAL diagonal matrix D is stored as a vector.
*>
*> Eventually to be replaced by BLAS_cge_diag_scale in the new BLAS
*> standard.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of D and X. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of X. N >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, length M
*> Diagonal matrix D, stored as a vector of length M.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,N)
*> On entry, the vector X to be scaled by D.
*> On exit, the scaled vector.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the vector X. LDX >= M.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CLARSCL2 ( M, N, D, X, LDX )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER M, N, LDX
* ..
* .. Array Arguments ..
COMPLEX X( LDX, * )
REAL D( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
* ..
* .. Executable Statements ..
*
DO J = 1, N
DO I = 1, M
X( I, J ) = X( I, J ) / D( I )
END DO
END DO
RETURN
END