*> \brief \b CLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLANHF + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION CLANHF( NORM, TRANSR, UPLO, N, A, WORK )
*
* .. Scalar Arguments ..
* CHARACTER NORM, TRANSR, UPLO
* INTEGER N
* ..
* .. Array Arguments ..
* REAL WORK( 0: * )
* COMPLEX A( 0: * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLANHF returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> complex Hermitian matrix A in RFP format.
*> \endverbatim
*>
*> \return CLANHF
*> \verbatim
*>
*> CLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER
*> Specifies the value to be returned in CLANHF as described
*> above.
*> \endverbatim
*>
*> \param[in] TRANSR
*> \verbatim
*> TRANSR is CHARACTER
*> Specifies whether the RFP format of A is normal or
*> conjugate-transposed format.
*> = 'N': RFP format is Normal
*> = 'C': RFP format is Conjugate-transposed
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> On entry, UPLO specifies whether the RFP matrix A came from
*> an upper or lower triangular matrix as follows:
*>
*> UPLO = 'U' or 'u' RFP A came from an upper triangular
*> matrix
*>
*> UPLO = 'L' or 'l' RFP A came from a lower triangular
*> matrix
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, CLANHF is
*> set to zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( N*(N+1)/2 );
*> On entry, the matrix A in RFP Format.
*> RFP Format is described by TRANSR, UPLO and N as follows:
*> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
*> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
*> TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A
*> as defined when TRANSR = 'N'. The contents of RFP A are
*> defined by UPLO as follows: If UPLO = 'U' the RFP A
*> contains the ( N*(N+1)/2 ) elements of upper packed A
*> either in normal or conjugate-transpose Format. If
*> UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements
*> of lower packed A either in normal or conjugate-transpose
*> Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When
*> TRANSR is 'N' the LDA is N+1 when N is even and is N when
*> is odd. See the Note below for more details.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK),
*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*> WORK is not referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> We first consider Standard Packed Format when N is even.
*> We give an example where N = 6.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*> conjugate-transpose of the first three columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*> conjugate-transpose of the last three columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N even and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- -- --
*> 03 04 05 33 43 53
*> -- --
*> 13 14 15 00 44 54
*> --
*> 23 24 25 10 11 55
*>
*> 33 34 35 20 21 22
*> --
*> 00 44 45 30 31 32
*> -- --
*> 01 11 55 40 41 42
*> -- -- --
*> 02 12 22 50 51 52
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- -- --
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> -- -- -- -- -- -- -- -- -- --
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
*>
*>
*> We next consider Standard Packed Format when N is odd.
*> We give an example where N = 5.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*> conjugate-transpose of the first two columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*> conjugate-transpose of the last two columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N odd and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- --
*> 02 03 04 00 33 43
*> --
*> 12 13 14 10 11 44
*>
*> 22 23 24 20 21 22
*> --
*> 00 33 34 30 31 32
*> -- --
*> 01 11 44 40 41 42
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- --
*> 02 12 22 00 01 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- --
*> 03 13 23 33 11 33 11 21 31 41 51
*> -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 43 44 22 32 42 52
*> \endverbatim
*>
* =====================================================================
REAL FUNCTION CLANHF( NORM, TRANSR, UPLO, N, A, WORK )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER NORM, TRANSR, UPLO
INTEGER N
* ..
* .. Array Arguments ..
REAL WORK( 0: * )
COMPLEX A( 0: * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, IFM, ILU, NOE, N1, K, L, LDA
REAL SCALE, S, VALUE, AA, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME, SISNAN
EXTERNAL LSAME, SISNAN
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
CLANHF = ZERO
RETURN
ELSE IF( N.EQ.1 ) THEN
CLANHF = ABS(REAL(A(0)))
RETURN
END IF
*
* set noe = 1 if n is odd. if n is even set noe=0
*
NOE = 1
IF( MOD( N, 2 ).EQ.0 )
$ NOE = 0
*
* set ifm = 0 when form='C' or 'c' and 1 otherwise
*
IFM = 1
IF( LSAME( TRANSR, 'C' ) )
$ IFM = 0
*
* set ilu = 0 when uplo='U or 'u' and 1 otherwise
*
ILU = 1
IF( LSAME( UPLO, 'U' ) )
$ ILU = 0
*
* set lda = (n+1)/2 when ifm = 0
* set lda = n when ifm = 1 and noe = 1
* set lda = n+1 when ifm = 1 and noe = 0
*
IF( IFM.EQ.1 ) THEN
IF( NOE.EQ.1 ) THEN
LDA = N
ELSE
* noe=0
LDA = N + 1
END IF
ELSE
* ifm=0
LDA = ( N+1 ) / 2
END IF
*
IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
K = ( N+1 ) / 2
VALUE = ZERO
IF( NOE.EQ.1 ) THEN
* n is odd & n = k + k - 1
IF( IFM.EQ.1 ) THEN
* A is n by k
IF( ILU.EQ.1 ) THEN
* uplo ='L'
J = 0
* -> L(0,0)
TEMP = ABS( REAL( A( J+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = 1, N - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
DO J = 1, K - 1
DO I = 0, J - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J - 1
* L(k+j,k+j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J
* -> L(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J + 1, N - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
ELSE
* uplo = 'U'
DO J = 0, K - 2
DO I = 0, K + J - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = K + J - 1
* -> U(i,i)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = I + 1
* =k+j; i -> U(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = K + J + 1, N - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
DO I = 0, N - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
* j=k-1
END DO
* i=n-1 -> U(n-1,n-1)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END IF
ELSE
* xpose case; A is k by n
IF( ILU.EQ.1 ) THEN
* uplo ='L'
DO J = 0, K - 2
DO I = 0, J - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J
* L(i,i)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J + 1
* L(j+k,j+k)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J + 2, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
J = K - 1
DO I = 0, K - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = K - 1
* -> L(i,i) is at A(i,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO J = K, N - 1
DO I = 0, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
ELSE
* uplo = 'U'
DO J = 0, K - 2
DO I = 0, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
J = K - 1
* -> U(j,j) is at A(0,j)
TEMP = ABS( REAL( A( 0+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = 1, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
DO J = K, N - 1
DO I = 0, J - K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J - K
* -> U(i,i) at A(i,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J - K + 1
* U(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J - K + 2, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
END IF
END IF
ELSE
* n is even & k = n/2
IF( IFM.EQ.1 ) THEN
* A is n+1 by k
IF( ILU.EQ.1 ) THEN
* uplo ='L'
J = 0
* -> L(k,k) & j=1 -> L(0,0)
TEMP = ABS( REAL( A( J+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
TEMP = ABS( REAL( A( J+1+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = 2, N
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
DO J = 1, K - 1
DO I = 0, J - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J
* L(k+j,k+j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J + 1
* -> L(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J + 2, N
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
ELSE
* uplo = 'U'
DO J = 0, K - 2
DO I = 0, K + J - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = K + J
* -> U(i,i)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = I + 1
* =k+j+1; i -> U(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = K + J + 2, N
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
DO I = 0, N - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
* j=k-1
END DO
* i=n-1 -> U(n-1,n-1)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = N
* -> U(k-1,k-1)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END IF
ELSE
* xpose case; A is k by n+1
IF( ILU.EQ.1 ) THEN
* uplo ='L'
J = 0
* -> L(k,k) at A(0,0)
TEMP = ABS( REAL( A( J+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = 1, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
DO J = 1, K - 1
DO I = 0, J - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J - 1
* L(i,i)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J
* L(j+k,j+k)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J + 1, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
J = K
DO I = 0, K - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = K - 1
* -> L(i,i) is at A(i,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO J = K + 1, N
DO I = 0, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
ELSE
* uplo = 'U'
DO J = 0, K - 1
DO I = 0, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
J = K
* -> U(j,j) is at A(0,j)
TEMP = ABS( REAL( A( 0+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = 1, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
DO J = K + 1, N - 1
DO I = 0, J - K - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = J - K - 1
* -> U(i,i) at A(i,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
I = J - K
* U(j,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
DO I = J - K + 1, K - 1
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END DO
J = N
DO I = 0, K - 2
TEMP = ABS( A( I+J*LDA ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
I = K - 1
* U(k,k) at A(i,j)
TEMP = ABS( REAL( A( I+J*LDA ) ) )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END IF
END IF
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
$ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is Hermitian).
*
IF( IFM.EQ.1 ) THEN
* A is 'N'
K = N / 2
IF( NOE.EQ.1 ) THEN
* n is odd & A is n by (n+1)/2
IF( ILU.EQ.0 ) THEN
* uplo = 'U'
DO I = 0, K - 1
WORK( I ) = ZERO
END DO
DO J = 0, K
S = ZERO
DO I = 0, K + J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(i,j+k)
S = S + AA
WORK( I ) = WORK( I ) + AA
END DO
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j+k,j+k)
WORK( J+K ) = S + AA
IF( I.EQ.K+K )
$ GO TO 10
I = I + 1
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j,j)
WORK( J ) = WORK( J ) + AA
S = ZERO
DO L = J + 1, K - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
10 CONTINUE
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
ELSE
* ilu = 1 & uplo = 'L'
K = K + 1
* k=(n+1)/2 for n odd and ilu=1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = K - 1, 0, -1
S = ZERO
DO I = 0, J - 2
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,i+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + AA
END DO
IF( J.GT.0 ) THEN
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j+k,j+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + S
* i=j
I = I + 1
END IF
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j,j)
WORK( J ) = AA
S = ZERO
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END IF
ELSE
* n is even & A is n+1 by k = n/2
IF( ILU.EQ.0 ) THEN
* uplo = 'U'
DO I = 0, K - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 1
S = ZERO
DO I = 0, K + J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(i,j+k)
S = S + AA
WORK( I ) = WORK( I ) + AA
END DO
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j+k,j+k)
WORK( J+K ) = S + AA
I = I + 1
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j,j)
WORK( J ) = WORK( J ) + AA
S = ZERO
DO L = J + 1, K - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
ELSE
* ilu = 1 & uplo = 'L'
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = K - 1, 0, -1
S = ZERO
DO I = 0, J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,i+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + AA
END DO
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j+k,j+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + S
* i=j
I = I + 1
AA = ABS( REAL( A( I+J*LDA ) ) )
* -> A(j,j)
WORK( J ) = AA
S = ZERO
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END IF
END IF
ELSE
* ifm=0
K = N / 2
IF( NOE.EQ.1 ) THEN
* n is odd & A is (n+1)/2 by n
IF( ILU.EQ.0 ) THEN
* uplo = 'U'
N1 = K
* n/2
K = K + 1
* k is the row size and lda
DO I = N1, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, N1 - 1
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,n1+i)
WORK( I+N1 ) = WORK( I+N1 ) + AA
S = S + AA
END DO
WORK( J ) = S
END DO
* j=n1=k-1 is special
S = ABS( REAL( A( 0+J*LDA ) ) )
* A(k-1,k-1)
DO I = 1, K - 1
AA = ABS( A( I+J*LDA ) )
* A(k-1,i+n1)
WORK( I+N1 ) = WORK( I+N1 ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
DO J = K, N - 1
S = ZERO
DO I = 0, J - K - 1
AA = ABS( A( I+J*LDA ) )
* A(i,j-k)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=j-k
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(j-k,j-k)
S = S + AA
WORK( J-K ) = WORK( J-K ) + S
I = I + 1
S = ABS( REAL( A( I+J*LDA ) ) )
* A(j,j)
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(j,l)
WORK( L ) = WORK( L ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
ELSE
* ilu=1 & uplo = 'L'
K = K + 1
* k=(n+1)/2 for n odd and ilu=1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 2
* process
S = ZERO
DO I = 0, J - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
AA = ABS( REAL( A( I+J*LDA ) ) )
* i=j so process of A(j,j)
S = S + AA
WORK( J ) = S
* is initialised here
I = I + 1
* i=j process A(j+k,j+k)
AA = ABS( REAL( A( I+J*LDA ) ) )
S = AA
DO L = K + J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(l,k+j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( K+J ) = WORK( K+J ) + S
END DO
* j=k-1 is special :process col A(k-1,0:k-1)
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(k,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=k-1
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = S
* done with col j=k+1
DO J = K, N - 1
* process col j of A = A(j,0:k-1)
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END IF
ELSE
* n is even & A is k=n/2 by n+1
IF( ILU.EQ.0 ) THEN
* uplo = 'U'
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 1
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i+k)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( J ) = S
END DO
* j=k
AA = ABS( REAL( A( 0+J*LDA ) ) )
* A(k,k)
S = AA
DO I = 1, K - 1
AA = ABS( A( I+J*LDA ) )
* A(k,k+i)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
DO J = K + 1, N - 1
S = ZERO
DO I = 0, J - 2 - K
AA = ABS( A( I+J*LDA ) )
* A(i,j-k-1)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=j-1-k
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(j-k-1,j-k-1)
S = S + AA
WORK( J-K-1 ) = WORK( J-K-1 ) + S
I = I + 1
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(j,j)
S = AA
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(j,l)
WORK( L ) = WORK( L ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
* j=n
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(i,k-1)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=k-1
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = WORK( I ) + S
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
ELSE
* ilu=1 & uplo = 'L'
DO I = K, N - 1
WORK( I ) = ZERO
END DO
* j=0 is special :process col A(k:n-1,k)
S = ABS( REAL( A( 0 ) ) )
* A(k,k)
DO I = 1, K - 1
AA = ABS( A( I ) )
* A(k+i,k)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( K ) = WORK( K ) + S
DO J = 1, K - 1
* process
S = ZERO
DO I = 0, J - 2
AA = ABS( A( I+J*LDA ) )
* A(j-1,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
AA = ABS( REAL( A( I+J*LDA ) ) )
* i=j-1 so process of A(j-1,j-1)
S = S + AA
WORK( J-1 ) = S
* is initialised here
I = I + 1
* i=j process A(j+k,j+k)
AA = ABS( REAL( A( I+J*LDA ) ) )
S = AA
DO L = K + J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(l,k+j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( K+J ) = WORK( K+J ) + S
END DO
* j=k is special :process col A(k,0:k-1)
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(k,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
*
* i=k-1
AA = ABS( REAL( A( I+J*LDA ) ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = S
* done with col j=k+1
DO J = K + 1, N
*
* process col j-1 of A = A(j-1,0:k-1)
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j-1,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
WORK( J-1 ) = WORK( J-1 ) + S
END DO
VALUE = WORK( 0 )
DO I = 1, N-1
TEMP = WORK( I )
IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
$ VALUE = TEMP
END DO
END IF
END IF
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
K = ( N+1 ) / 2
SCALE = ZERO
S = ONE
IF( NOE.EQ.1 ) THEN
* n is odd
IF( IFM.EQ.1 ) THEN
* A is normal & A is n by k
IF( ILU.EQ.0 ) THEN
* A is upper
DO J = 0, K - 3
CALL CLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
* L at A(k,0)
END DO
DO J = 0, K - 1
CALL CLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
* trap U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
L = K - 1
* -> U(k,k) at A(k-1,0)
DO I = 0, K - 2
AA = REAL( A( L ) )
* U(k+i,k+i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* U(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
AA = REAL( A( L ) )
* U(n-1,n-1)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
ELSE
* ilu=1 & A is lower
DO J = 0, K - 1
CALL CLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
* trap L at A(0,0)
END DO
DO J = 1, K - 2
CALL CLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
* U at A(0,1)
END DO
S = S + S
* double s for the off diagonal elements
AA = REAL( A( 0 ) )
* L(0,0) at A(0,0)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = LDA
* -> L(k,k) at A(0,1)
DO I = 1, K - 1
AA = REAL( A( L ) )
* L(k-1+i,k-1+i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* L(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
END IF
ELSE
* A is xpose & A is k by n
IF( ILU.EQ.0 ) THEN
* A**H is upper
DO J = 1, K - 2
CALL CLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
* U at A(0,k)
END DO
DO J = 0, K - 2
CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k-1 rect. at A(0,0)
END DO
DO J = 0, K - 2
CALL CLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
$ SCALE, S )
* L at A(0,k-1)
END DO
S = S + S
* double s for the off diagonal elements
L = 0 + K*LDA - LDA
* -> U(k-1,k-1) at A(0,k-1)
AA = REAL( A( L ) )
* U(k-1,k-1)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA
* -> U(0,0) at A(0,k)
DO J = K, N - 1
AA = REAL( A( L ) )
* -> U(j-k,j-k)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* -> U(j,j)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
ELSE
* A**H is lower
DO J = 1, K - 1
CALL CLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
* U at A(0,0)
END DO
DO J = K, N - 1
CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k-1 rect. at A(0,k)
END DO
DO J = 0, K - 3
CALL CLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
* L at A(1,0)
END DO
S = S + S
* double s for the off diagonal elements
L = 0
* -> L(0,0) at A(0,0)
DO I = 0, K - 2
AA = REAL( A( L ) )
* L(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* L(k+i,k+i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
* L-> k-1 + (k-1)*lda or L(k-1,k-1) at A(k-1,k-1)
AA = REAL( A( L ) )
* L(k-1,k-1) at A(k-1,k-1)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
END IF
END IF
ELSE
* n is even
IF( IFM.EQ.1 ) THEN
* A is normal
IF( ILU.EQ.0 ) THEN
* A is upper
DO J = 0, K - 2
CALL CLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
* L at A(k+1,0)
END DO
DO J = 0, K - 1
CALL CLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
* trap U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
L = K
* -> U(k,k) at A(k,0)
DO I = 0, K - 1
AA = REAL( A( L ) )
* U(k+i,k+i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* U(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
ELSE
* ilu=1 & A is lower
DO J = 0, K - 1
CALL CLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
* trap L at A(1,0)
END DO
DO J = 1, K - 1
CALL CLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
* U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
L = 0
* -> L(k,k) at A(0,0)
DO I = 0, K - 1
AA = REAL( A( L ) )
* L(k-1+i,k-1+i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* L(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
END IF
ELSE
* A is xpose
IF( ILU.EQ.0 ) THEN
* A**H is upper
DO J = 1, K - 1
CALL CLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
* U at A(0,k+1)
END DO
DO J = 0, K - 1
CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k rect. at A(0,0)
END DO
DO J = 0, K - 2
CALL CLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
$ S )
* L at A(0,k)
END DO
S = S + S
* double s for the off diagonal elements
L = 0 + K*LDA
* -> U(k,k) at A(0,k)
AA = REAL( A( L ) )
* U(k,k)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA
* -> U(0,0) at A(0,k+1)
DO J = K + 1, N - 1
AA = REAL( A( L ) )
* -> U(j-k-1,j-k-1)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* -> U(j,j)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
* L=k-1+n*lda
* -> U(k-1,k-1) at A(k-1,n)
AA = REAL( A( L ) )
* U(k,k)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
ELSE
* A**H is lower
DO J = 1, K - 1
CALL CLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
* U at A(0,1)
END DO
DO J = K + 1, N
CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k rect. at A(0,k+1)
END DO
DO J = 0, K - 2
CALL CLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
* L at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
L = 0
* -> L(k,k) at A(0,0)
AA = REAL( A( L ) )
* L(k,k) at A(0,0)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = LDA
* -> L(0,0) at A(0,1)
DO I = 0, K - 2
AA = REAL( A( L ) )
* L(i,i)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
AA = REAL( A( L+1 ) )
* L(k+i+1,k+i+1)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
L = L + LDA + 1
END DO
* L-> k - 1 + k*lda or L(k-1,k-1) at A(k-1,k)
AA = REAL( A( L ) )
* L(k-1,k-1) at A(k-1,k)
IF( AA.NE.ZERO ) THEN
IF( SCALE.LT.AA ) THEN
S = ONE + S*( SCALE / AA )**2
SCALE = AA
ELSE
S = S + ( AA / SCALE )**2
END IF
END IF
END IF
END IF
END IF
VALUE = SCALE*SQRT( S )
END IF
*
CLANHF = VALUE
RETURN
*
* End of CLANHF
*
END