*> \brief CHESV_AASEN computes the solution to system of linear equations A * X = B for HE matrices
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHESV_AASEN + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHESV_AASEN( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
* LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, LDB, LWORK, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHESV_AASEN computes the solution to a complex system of linear equations
*> A * X = B,
*> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
*> matrices.
*>
*> Aasen's algorithm is used to factor A as
*> A = U * T * U**H, if UPLO = 'U', or
*> A = L * T * L**H, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is Hermitian and tridiagonal. The factored form
*> of A is then used to solve the system of equations A * X = B.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
*> N-by-N upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the tridiagonal matrix T and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*T*U**H or A = L*T*L**H as computed by
*> CHETRF_AASEN.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> On exit, it contains the details of the interchanges, i.e.,
*> the row and column k of A were interchanged with the
*> row and column IPIV(k).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the N-by-NRHS right hand side matrix B.
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >= 1, and for best performance
*> LWORK >= max(1,N*NB), where NB is the optimal blocksize for
*> CHETRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
*> has been completed, but the block diagonal matrix D is
*> exactly singular, so the solution could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2016
*
*> \ingroup complexHEsolve
*
* @generated from zhesv_aasen.f, fortran z -> c, Mon Oct 3 01:48:05 2016
*
* =====================================================================
SUBROUTINE CHESV_AASEN( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
$ LWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LDB, LWORK, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER LWKOPT, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, CHETRF, CHETRS, CHETRS2
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'CHETRF_AASEN', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 3*N-2, (1+NB)*N )
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHESV_AASEN ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Compute the factorization A = U*T*U**H or A = L*T*L**H.
*
CALL CHETRF_AASEN( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL CHETRS_AASEN( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
$ LWORK, INFO )
*
END IF
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CHESV_AASEN
*
END